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up-to-date version of this and other LESs in the suite are available on the COVID-END website. 

 

 

Questions 

 

Effectiveness 

 

1. What is the effectiveness of different ventilation strategies in reducing transmission of COVID-

19 and other viral respiratory illnesses (e.g. influenza, respiratory syncytial virus (RSV)) in 

community-based settings (i.e., not clinical or healthcare settings)? Ventilation strategies include 

ventilation rates (air changes per hour, flow rates), air flow patterns, and the ratio of outdoor air 

to re-used air. 

2. What is the effectiveness of different filter ratings (within ventilation systems) in reducing 

transmission of COVID-19 or other viral respiratory illnesses in community-based settings? 

3. What is the effectiveness of different combinations of ventilation and filtration strategies in 

reducing transmission of COVID-19 or other viral respiratory illnesses in community-based 

settings? 

 

Negative outcomes 

 

4. What are the economic impacts of improving mechanical ventilation? 

5. What are the negative socio-economic impacts of improving ventilation (e.g., increased inequity 

in COVID-19 transmission)? 

 

Executive summary 

https://www.mcmasterforum.org/spark-action/suite-of-living-evidence-syntheses-about-covid-19-public-health-and-social-measures
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Background 

• Airborne (or aerosol) transmission is recognized as a route of transmission of the SARS-CoV-2 
virus which causes COVID-19 illness.1 Airborne transmission occurs when the virus is released 
by an infected individual in small particles; aerosol droplets tend to follow air flow patterns 
instead of travelling on their own trajectory. The aerosol droplets travel with the air and may be 
inhaled by other individuals. Inhalation of these droplets may or may not result in infection and 
subsequent illness based on various factors, such as viral load and characteristics of the 
individual. Aerosol droplets can remain airborne, sometimes indefinitely, and can travel long 
distances. Environmental conditions such as ventilation rates and airflow patterns affect the 
routes and distances that aerosols travel. 

• Heating, ventilation and air conditioning (HVAC) systems within the built environment can 
increase or mitigate the risk of airborne transmission of aerosols. There are numerous features 
within HVAC systems that can be modified to potentially alter this risk. This review focused on: 
ventilation rates (often quantified as air changes per hour); air flow patterns (i.e., where air flows 
within a space, influenced by various factors including the nature and placements of inlet and 
outflow of air from a space); the ratio of outdoor (e.g., fresh) air to re-used air (outdoor air is 
introduced by mechanical HVAC systems as well as by opening doors or windows); and filters 
within HVAC systems. 

• Recent systematic reviews (SRs) have investigated ventilation,2 filtration,3 humidity,4 and 
ultraviolet irradiation5 within mechanical HVAC systems and the impact of these features on 
aerosol transmission. The SR of ventilation (32 studies published between 2004 and 2021; 
majority modelling studies) confirmed a number of well-understood principles, including 
increasing ventilation rate is associated with decreased virus transmission. However, multiple 
factors need to be considered simultaneously “such as ventilation rate, airflow patterns, air 
balancing, occupancy, and feature placement.” The SR of filtration (23 studies published 
between 1966 and 2021; animal studies n=17, aerosolized virus studies n=7, modelling studies 
n=9) also confirmed several well-understood principles, including decreased virus transmission 
with increasing filter efficiency. The review authors concluded that “filtration is one factor 
offering demonstrated potential for decreased transmission.”  

• The American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) sets 
standards for testing and application of HVAC features that guide practices in North America. A 
statement from ASHRAE in April 2021 acknowledged that airborne transmission of SARS-
CoV-2 is significant and provided guidance on changes to building operations including HVAC 
systems.6  

 
Key points 

• Airborne transmission is a route for COVID-19 infection and involves transmission through 
aerosols. Ventilation and filtration can affect movement of aerosols within a space, including the 
patterns and distances that aerosols travel. 

• There is a paucity of ‘real world’ evidence comparing ventilation or filtration strategies for 
reducing risk of COVID-19 infection. 

• Two cross-sectional studies of elementary schools in the U.S. and meat packing plants in 
Germany found associations between ventilation and incidence of COVID-19 illness. Both 
studies were considered to have serious risk of bias due to confounding and/or non-response. 
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• Three studies used modelling to investigate outbreaks of COVID-19 and demonstrated an 
association between ventilation rates and infection risk or attack rates.   

• Many other modelling and simulation studies of ventilation and filtration have been published 
since the start of the COVID-19 pandemic. Some include risk or probability of transmission or 
infection; however, many others focus on airflow patterns, dispersion of particles, or 
concentration of potentially infectious particles (i.e., outcomes that are upstream in the 
transmission/infection chain). These studies may be challenging to apply to ‘real world’ 
scenarios due to the complex interactions of variables related to ventilation parameters 
themselves as well as other factors in the space (e.g., occupancy, characteristics and movement 
of infected and non-infected individuals, etc.). 

• A number of principles regarding ventilation are well-established and supported by organizations 
that set standards for the HVAC industry such as ASHRAE. These include maintaining 
minimum outdoor airflow rates, using combinations of filters and air cleaners that achieve a 
minimum efficiency, promoting mixing of space air while avoiding strong air currents, and 
balancing exposure reduction with energy expenditures. They also provide recommendations for 
HVAC system operation and commissioning. These principles contribute to indoor air quality 
and also provide health benefits independent of COVID-19 (illnesses or irritation caused by 
viruses, bacteria, pollutants, allergens, and other agents). 

• Key points from citizen partners: Facilities should ensure that recommended standards for 
HVAC systems are implemented. This will contribute to improved indoor air quality and lessen 
other respiratory illnesses, negative health effects, and potential future outbreaks. 

 
Overview of evidence and knowledge gaps 

• There is a paucity of ‘real world’ evidence comparing ventilation or filtration strategies for 
reducing transmission of COVID-19. We identified two studies that met the inclusion criteria.7,8 
Both studies were considered to have serious risk of bias primarily due to confounding or non-
response. A cross-sectional study of elementary schools in Georgia, U.S. showed that COVID-
19 incidence was 39% lower in schools that implemented some measures to improve 
ventilation.7 Further, dilution methods alone (opening doors, opening windows, or using fans) 
resulted in 35% lower incidence, while a combined approach involving dilution and filtration 
(using HEPA filters [in air cleaners] with or without using UVGI) resulted in 48% lower 
incidence. A cross-sectional study of meat and chicken processing plants in Germany examined 
whether having a ventilation system reduced the chance of testing positive for COVID-19.8 
Results for the multivariable logistic regression showed a significant reduction among temporary 
and contract workers (aOR 0.541, 95% CI 0.368– 0.796). Assessment of “maximum outdoor air 
flow per employee” was also associated with reduced chance of COVID-19 infection (aOR 
0.996, 95% CI 0.993-0.999). 

• Another three studies used modelling and simulations to investigate outbreaks of COVID-19. 
Two studies used computational fluid dynamics and showed that increasing ventilation rates and 
fresh-air supply reduced risk of infection in the restaurant in Guangzhou, China where an 
outbreak occurred in January 2020. A third study investigated an outbreak caused by the same 
infected individual on two buses in Hunan Province, China in January 2020. Through 
simulations, they estimated ventilation rates in each bus and found that attack rate (number of 
infected cases/number of persons) was higher on the bus with the lower ventilation rate.   

• The bulk of the scientific literature on these topics is in the form of modelling or simulation 
studies. It can be challenging to apply results from these studies to practical applications for 
various reasons. For instance, they may be based on assumptions that vary across specific ‘real 
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world’ settings. They may focus on specific configurations that change continuously in real 
world scenarios (e.g., occupancy, movement, and specific activities of people within a space, 
presence and characteristics of infected individuals, susceptibility of other individuals). And 
often they focus on specific steps within the chain of transmission: many modelling or 
simulation studies examine air flow patterns, dispersion of air particles within a space, or 
concentration of potentially infectious particles within air samples across time and space 
considerations; however, they may not consider the impacts in terms of transmission of 
infectious particles and occurrence of illness. 

 
Suggested Tweet 

• #ventilation #filters #hvac affect #coronavirus transmission. #iaq saves lives and money.  
 
  



LES 15.1: Ventilation for reducing transmission of COVID-19 in non-clinical settings  

5 

 

Findings 
 

• The search and reference check 
identified 1,060 studies. Two 
hundred and nine studies were 
considered potentially relevant.  

• Two studies met the eligibility 
criteria (Table 1). We also identified 
three modelling studies that 
investigated COVID-19 outbreaks 
(Table 2). Further, we identified 55 
modelling and simulation studies 
that reported on risk or probability 
of transmission or infection (list of 
studies included in Appendix 3). 

• Figure 1 shows the flow of studies 
through the search and selection 
process.  

 
Summary of findings about 
reducing transmission of COVID-19 
or risk of infection 
 
Two studies were included that report 
on reducing transmission of COVID-
19 as an outcome. The characteristics, 
findings and assessment of risk of bias 
for each study is presented in Table 1.  
 
A cross-sectional study examined the 
association between COVID-19 
incidence and public health measures 
implemented at elementary schools in 
Georgia, United States.7 Public health 
measures included “ventilation 
improvements” overall, and type of 
improvement (opening 
doors/windows, using fans to increase 
effectiveness of open windows, 
installation of HEPA filtration systems 
in high-risk areas, or installation of 
UVGI in high-risk areas). Among 169 
schools, those that implemented 
ventilation improvements (n=87) 
showed reduced risk of COVID-19 
incidence (risk ratio 0.61, 95% CI 0.43–
0.87). Based on 123 schools with 

Box 1: Our approach  
 
We retrieved studies by searching: 1) PubMed via COVID-19+ 
Evidence Alerts; 2) pre-print servers through iCITE; 3) Compendex; 
and 4) Web of Science. Searches were conducted for studies reported in 
English, conducted with humans and published since 1 January 2020 (to 
coincide with the emergence of COVID-19 as a global pandemic). 
Detailed search strategy is included in Appendix 1, and eligibility 
criteria in Appendix 2. 
 
Studies identified up to December 16, 2022 that reported on empirical 
data with a comparator were considered for inclusion. Modelling and 
simulation studies were identified but not included for review, unless 
they investigated an actual COVID-19 outbreak. Other study designs 
may be considered for future versions in the absence of other forms of 
evidence. A full list of included studies is provided in Table 1. Table 2 
lists modelling studies that investigated COVID-19 outbreaks. Studies 
excluded at the last stages of reviewing are provided in Appendix 3. 

 
Population of interest: All population groups that report data related 
to all COVID-19 variants and sub-variants. 
 
Intervention and control/comparator: Different rates and 
mechanisms (i.e., mechanical, natural, or infiltration) of air dilution; 
different filter ratings; and, different combinations of ventilation and 
filtration strategies. Definitions provided in Appendix 4. 
  
Effectiveness outcomes. Primary outcome: Reduction in 
transmission of COVID-19. Secondary outcomes: Reduction in 
transmission of other respiratory infections. 

 
Study selection: One reviewer screened all titles and abstracts; a 
second reviewer screened those that were excluded by the first reviewer 
to ensure no potentially relevant records were missed. The full text of 
potentially relevant studies was reviewed by one reviewer. All team 
members discussed those that were unclear.  
  
Data extraction: Data extraction was conducted by one team member 
and checked for accuracy and consistency by another using the template 
provided in Appendix 5. 
 
Critical appraisal: Risk of Bias (ROB) of individual studies was 
assessed using validated ROB tools. For observational studies, we used 
ROBINS-I. Judgements for the domains within these tools were 
decided by consensus between at least two team members. Modelling 
studies were not assessed for ROB, as these are considered to provide 
indirect evidence of effects. Our detailed approach to critical appraisal is 
provided in Appendix 6. 
 
Summaries: We synthesized the evidence by presenting a narrative 
summary of each study’s findings. This document will be updated every 
six weeks up to the end of March 2023. 
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available data, the following were associated with reduced risk of COVID-19 incidence compared to 
no ventilation improvements (n=37): dilution methods only (opening doors, opening windows, or 
using fans; n=39, 0.65, 95% CI 0.43–0.98); filtration +/- purification only (using HEPA filters with 
or without using UVGI and not opening doors, opening windows, or using fans; n=16, 0.69, 95% 
CI 0.40-1.21); and, dilution and filtration ± purification (opening doors, opening windows, or using 
fans, and using HEPA filters with or without using UVGI; n=31, 0.52, 95% CI 0.32–0.83). The 
study was considered at serious risk of bias due to lack of control for confounding (including other 
public health measures) and low response (11.6% of 1,461 schools). 
 
A cross-sectional study of 22 meat and chicken processing plants in Germany assessed the 
association between infections and possible risk factors including ventilation, which was quantified 
as: outdoor air flow per employee in a working area = outdoor air flow / (number of employees in a 
working area / number of shifts in the working area). Based on results of multivariable logistic 
regression analysis (for subsample of companies with many infected workers), having a ventilation 
system reduced chance of testing positive for COVID-19. The results overall (6,522 workers) were 
not statistically significant (adjusted OR 0.757, 95% CI 0.563– 1.018). Results by type of worker 
showed no significant association for regular workers (aOR 1.076, 95% CI 0.619– 1.869) but a 
significant reduction for temporary and contract workers (aOR 0.541, 95% CI 0.368– 0.796). Overall 
results of multivariable logistic regression for maximum outdoor air flow (OAF) per employee 
found no significant difference (aOR 1.000 (95% CI 1.000– 1.000). However, when the delivery, 
stunning/slinging/hanging, and slaughter areas were excluded from analysis (these areas have a 
process related high ventilation rate) (n=2,334) the association was significant (aOR 0.996, 95% CI 
0.993–0.999; including interaction term for temperature and OAF, aOR 0.984, 95% CI 0.971– 0.996. 
This study was considered at serious risk of bias due to lack of control for all possible sources of 
confounding.  
 
Three studies used modelling and simulations to investigate outbreaks of COVID-19 (Table 2). Two 
studies used computational fluid dynamics and found that increasing ventilation rates and fresh-air 
supply reduced risk of infection in the restaurant in Guangzhou, China where an outbreak occurred 
in January 2020.9,10 Ho et al 2021 showed that increasing the percentage of fresh-air in the supply air 
(by 10%, 50%, 100%) resulted in lower probability of infection (by 11%, 37%, and 51%, 
respectively). Liu et al 2020 simulated aerosol exposure index for individuals sitting at different 
tables in the restaurant and determined that infection risk for each individual was lower with 
increased ventilation. A third study investigated an outbreak caused by the same infected individual 
on two buses in Hunan Province, China in January 2020.11 Through simulations, they estimated 
ventilation rates in each bus and found that attack rate (number of infected cases/number of 
persons) was higher on the bus with the lower ventilation rate (15.2% vs. 11.8%). 
 
Summary of findings about negative outcomes 
 
No studies were identified that reported on negative outcomes (e.g., costs, inequities).  
 
Discussion 
 
Several epidemiologic investigations of COVID-19 outbreaks in different community-based settings 
(e.g., restaurant, meat processing plant, sports facility, etc.) have determined that airborne 
transmission was a likely cause and that ventilation in the space was a contributing factor, either due 
to low ventilation rates, high occupancy, and/or air flow patterns created by air conditioning.12-14  



LES 15.1: Ventilation for reducing transmission of COVID-19 in non-clinical settings  

7 

 

Recent systematic reviews (SRs) have investigated the impact of ventilation,2 filtration,3 humidity,4 
and ultraviolet irradiation5 within mechanical HVAC systems and the impact of these features on 
aerosol transmission.  
 
A SR of ventilation included 32 studies (published between 2004 and 2021; majority modelling 
studies) examining the impact of ventilation rates and airflow patterns on coronavirus transmission. 
The findings confirmed a number of well-understood principles: “increased ventilation rate was 
associated with decreased transmission…; increased ventilation rate decreased risk at longer 
exposure times; some ventilation was better than no ventilation; airflow patterns affected 
transmission; ventilation feature (e.g., supply/exhaust, fans) placement influenced particle 
distribution.” However, the review found few studies that offered specific quantitative ventilation 
parameters. While the review authors offered some implications for practice, they highlighted that 
there is “not a one-solution-fits-all approach” as multiple “factors such as ventilation rate, airflow 
patterns, air balancing, occupancy, and feature placement” influence aerosol transmission and risk. 
 
A SR of filtration included 23 studies (published between 1966 and 2021) examining seven viruses 
and three bacteriophages and included animal studies (n=17), aerosolized virus studies (n=7) and 
modelling studies (n=9). This review also confirmed several well-understood principles: “filtration 
was associated with decreased transmission; filters removed viruses from the air; increasing filter 
efficiency (efficiency of particle removal) was associated with decreased transmission, decreased 
infection risk, and increased viral filtration efficiency (efficiency of virus removal); increasing filter 
efficiency above MERV 13 was associated with limited benefit in further reduction of virus 
concentration and infection risk; and filters with the same efficiency rating from different companies 
showed variable performance.” The review authors concluded that “adapting HVAC systems to 
mitigate virus transmission requires a multi-factorial approach and filtration is one factor offering 
demonstrated potential for decreased transmission.” Review authors noted that the costs associated 
with increasing filter efficiency may be “lower than the cost of ventilation options with the 
equivalent reduction in transmission.”  
 
The American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) sets 
standards for testing and application of HVAC features that guide practices in North America. A 
statement from ASHRAE in April 2021 acknowledged that airborne transmission of SARS-CoV-2 is 
significant and provided guidance on changes to building operations including HVAC systems.6 A 
summary of their recommendations can be found at 
https://www.ashrae.org/file%20library/technical%20resources/covid-19/core-recommendations-
for-reducing-airborne-infectious-aerosol-exposure.pdf, while guidance for specific settings (e.g., 
industrial settings, residential buildings, schools, dining structures, etc.) is available at 
https://www.ashrae.org/technical-resources/covid-19-one-page-guidance-documents. The Heating, 
Refrigeration and Air Conditioning Institute (HRAI) of Canada represents the HVAC industry in 
Canada and follows ASHRAE standards. HRAI has produced HVAC guidance for schools in the 
context of COVID-19.15 
 
 
 
  

https://www.ashrae.org/technical-resources/covid-19-one-page-guidance-documents
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Figure 1: Flow diagram for study identification (from Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses, PRISMA)  

 



 

Table 1: Summary of studies reporting on effectiveness of ventilation in reducing COVID-19 infections 
Author 
Year/Date 
Country 

Setting and time 
covered  

Study characteristics Summary of key findings in relation to the 
outcome(s) 

Risk of 
bias 
rating 

Gettings7 
May 28, 2021 
USA 
[139] 

Georgia state 
elementary schools 
(kindergarten 
through grade 5) 
 
November 16 – 
December 11, 
2020 

Design: cross-sectional study (self-reported cases to state 
public health department; online survey completed by 
school representatives) 

Intervention: ventilation improvements: “steps being 
taken to improve air quality and increase the ventilation 
in the school”; those who responded “yes” were asked to 
select one or more of the following: opening 
doors/windows, using fans to increase effectiveness of 
open windows, installation of HEPA filtration systems in 
high-risk areas, or installation of UVGI in high-risk areas 

Sample: 169 (11.6% of 1,461) schools including 91,893 
students with available case data (number of cases = 566) 

Key outcomes: COVID-19 cases and incidence 

Agents assessed: SARS-CoV-2 

• COVID-19 incidence 39% lower in schools that 
improved ventilation, compared with schools that 
did not (RR 0.61, 95% CI 0.43–0.87 

• Ventilation strategies associated with lower school 
incidence included methods to dilute airborne 
particles alone by opening windows, opening doors, 
or using fans (35% lower incidence, RR=0.65, 95% 
CI: 0.43–0.98), or in combination with methods to 
filter airborne particles using HEPA filtration with 
or without purification with UVGI (48% lower 
incidence, RR=0.52, 95% CI: 0.32–0.83) 

Serious 
risk of 
bias 

Pokora8 
June 10, 
2021 
Germany 
[338] 

Meat and poultry 
processing plants 
in Germany 
 
June to September 
2020 
 

Design: cross-sectional study (self-administered 
questionnaire) 

Intervention: multiple possible risk factors including 
ventilation, quantified as outdoor air flow per employee 
in a working area = outdoor air flow / (number of 
employees in a working area / number of shifts in the 
working area) 

Sample: 22 companies for 19,027 employees, including 
880 COVID-19 infected workers divided into the 
following groups: 

• 7 = many infected workers prevalence between 2.94 to 
35.10 infections per 100 employees 

• 5 = with fewer than 10 infected workers 

• 10 = with no infected workers 

Key outcomes: COVID-19 infection 

Agents assessed: SARS-CoV-2 

• Based on results of multivariable logistic regression 
analysis (for subsample of companies with many 
infected workers), having a ventilation system 
reduced chance of testing positive for COVID-19: 

• overall (6,522 workers): aOR 0.757 (95% CI 
0.563– 1.018) 

• results also presented by type of worker: regular 
workers (aOR 1.076, 95% CI 0.619– 1.869) vs. 
temporary and contract (aOR 0.541, 95% CI 
0.368– 0.796) 

• results of multivariable logistic regression for 
maximum outdoor air flow (OAF) per employee: 

• when delivery, stunning/slinging/hanging, and 
slaughter areas were excluded from analysis 
(these areas have a process related high 
ventilation rate) (n=2,334), aOR 0.996 95% (CI 
0.993–0.999); including interaction term for 
temperature and OAF, aOR 0.984 (0.971– 0.996) 

Serious 
risk of 
bias 

Abbreviations: aOR=adjusted odds ratio; HEPA=high-efficiency particulate absorbing; OR=odds ratio; RR=rate ratio; UVGI=ultraviolet germicidal irradiation 
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Table 2: Summary of modelling studies investigating COVID-19 outbreaks and reporting on effect of ventilation in reducing COVID-19 
infection risk or probability 

Reference 
Year/Date 
Country 

Objective / Summary Methods / Experiments Transmission / 
Infection 
Outcomes 

Summary of Findings 

Ho9 
2021 
China 
[167] 

To develop CFD simulations and 
methods to model the airflow, exposure, 
and probability of infection for the 
reported conditions at the Guangzhou 
restaurant (where an outbreak of COVID-
19 occurred in January 2020). Different 
configurations of the air conditioning 
(direction and magnitude of air flow, 
percentage of fresh air supplied) and 
boundary conditions (e.g., temperature, 
pressure, humidity) were investigated to 
determine the sensitivity of the results to 
these parameters and processes. 

CFD models were used to simulate 
expelled aerosol plume transport 
and dispersion and to perform 
comparative studies of exposure 
risks under various scenarios. Spatial 
and temporal simulations of the 
relative concentrations of the 
expelled pathogen (assumed to be 
uniformly distributed in the vapour 
plume) are compared and used to 
determine risks of exposure and 
probability of infection. 

Probability of 
infection 

Simulations confirmed that poor ventilation 
and recirculation increased pathogen 
concentrations and probability of infection.  
 
Increasing the fresh-air supply to the 
ventilation decreased the pathogen 
concentrations and probability of infection. 
Increasing the fresh-air percentage to 10%, 
50%, and 100% of the supply air reduced 
the accumulated pathogen mass in the room 

by an average of ∼30%, ∼70%, and ∼80%, 
respectively, over 73 min. The probability of 
infection was reduced by 11%, 37%, and 
51%, respectively. 

Liu10 
2020 
USA 
[248] 

CFD-based investigation of indoor air 
flow and the associated aerosol transport 
in a restaurant setting (Guangzhou, China; 
January 2020), where likely cases of 
airborne infection of COVID-19 caused 
by asymptomatic individuals were widely 
reported by the media. To demonstrate 
direct linkage between the simulation 
results (under different ventilation and 
thermal settings) and reported infection 
patterns as well as the corresponding 
detailed physical mechanisms that lead to 
airborne disease transmission. 

We employed an advanced in-house 
large eddy simulation solver and 
other cutting-edge numerical 
methods to resolve complex indoor 
processes simultaneously, including 
turbulence, flow–aerosol interplay, 
thermal effect, and the filtration 
effect by air conditioners. Using the 
aerosol exposure index derived from 
the simulation, we are able to 
provide a spatial map of the 
airborne infection risk under 
different settings. 

Infection risk In simulation with increased ventilation, the 
risk of infection is decreased (Fig 13 and 14, 
values presented graphically for each 
individual based on position at tables 
relative to infected source). 
 
The infection risk evaluation from our 
current CFD is only derived from the 
aerosol exposure index. To yield a more 
substantiated metric of infection risk, a 
relevant infection-dose model, currently not 
available for SARS-CoV-2, is needed. 
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Reference 
Year/Date 
Country 

Objective / Summary Methods / Experiments Transmission / 
Infection 
Outcomes 

Summary of Findings 

Ou11 
2022 
China 
[615] 

CFD was utilized to model airflows and 
investigate ventilation requirements of 
airborne transmission in a COVID-19 
outbreak initiating with a 24-year old man. 
Two buses (B1 and B2) were involved, 
with 10 non-associated infected 
passengers. We collected epidemiological 
data, bus itineraries, the seating plans of 
passengers, and the details of the 
ventilation systems and operation, and we 
performed detailed ventilation and 
dispersion measurements on the two 
buses with the original drivers on the 
original route. 

Dates of symptom onset and the 
seating arrangements on the two 
buses were obtained, as well as 
interviews with drivers and 
passengers. Various combinations of 
air conditioning/heating and 
windows open/ closed were 
considered to simulate the airflow at 
the time of infection. 
 
The ventilation rates on the buses 
were measured using a tracer-
concentration decay method with 
the original driver on the original 
route. We measured and calculated 
the spread of the exhaled virus-
laden droplet tracer from the 
suspected index case. 

Infection risk / 
attack rate 

On both buses, the distribution of the 
exhaled tracer gas was rather uniform due to 
the airflow patterns. 
 
Bus1 
- Attack rate = 7/46, 15.2% 
- Ventilation rate = 1.72 L/s per person 

1.72 L/s per person 
- Exposure time = 200 minutes 
Bus2  
- Attack rate = 2/17, 11.8% 
- Ventilation rate = 3.22 L/s per person 
- Exposure time = 60 minutes 
 
The ventilation rate of a bus depended on 
the driving speed and extent of window 
opening. The difference in ventilation rates 
and exposure time could explain why B1 
had a higher attack rate than B2. Airborne 
transmission due to poor ventilation below 
3.2 L/s played a role in this two-bus 
outbreak of COVID-19. 

Abbreviations: CFD=computational fluid dynamics 
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Appendices 
 
Appendix 1: Detailed search strategy (PubMed) 
 
#1 ("COVID 19"[MeSH] OR "COVID 19"[All Fields] OR "sars cov 2"[All Fields] OR "sars cov 

2"[MeSH] OR "severe acute respiratory syndrome coronavirus 2"[All Fields] OR ncov[All Fields] 

OR "2019 ncov"[All Fields] OR "coronavirus infections"[MeSH] OR coronavirus[MeSH] OR 

coronavirus[All Fields] OR coronaviruses[All Fields] OR betacoronavirus[MeSH] OR 

betacoronavirus[All Fields] OR betacoronaviruses[All Fields] OR "wuhan coronavirus"[All Fields] 

OR 2019nCoV[All Fields] OR Betacoronavirus*[All Fields] OR "Corona Virus*"[All Fields] OR 

Coronavirus*[All Fields] OR Coronovirus*[All Fields] OR CoV[All Fields] OR CoV2[All Fields] OR 

COVID[All Fields] OR COVID19[All Fields] OR COVID-19[All Fields] OR HCoV-19[All Fields] 

OR nCoV[All Fields] OR "SARS CoV 2"[All Fields] OR SARS2[All Fields] OR SARSCoV[All 

Fields] OR SARS-CoV[All Fields] OR SARS-CoV2[All Fields]) AND English[la]) 

#2 (environment, controlled[MeSH] OR air conditioning[MeSH] OR ventilation[MeSH] OR 

sanitary engineering[MeSH] OR filtration[MeSH] OR filtration[TIAB] OR "air condition*"[TIAB] 

OR "building ventilation"[TIAB] OR "ventilation system"[TIAB] OR "indoor ventilation"[TIAB] 

OR HVAC[TIAB] OR air samples[TIAB]) AND (Disease Transmission, Infectious*[Mesh] OR Air 

Pollution, Indoor[MeSH] OR transmission[Subheading] OR Infections[Mesh:NoExp] OR 

transmi*[TIAB] OR infect*[TIAB] OR contagi*[TIAB] OR outbreak*[TIAB] OR spread*[TIAB] 

OR decontamination[TIAB]) AND (Aerosols[MeSH] OR Air Microbiology[MeSH] OR 

Aerosol*[TIAB] OR bioaerosol*[TIAB] OR airborne[TIAB] OR droplet*[TIAB] OR "air 

exchange"[TIAB] OR "air change"[TIAB] OR "air flow"[TIAB] OR airflow[TIAB] OR "fluid 

dynamics"[TIAB]) 

#1 and #2 
 
#4 search*[Title/Abstract] OR meta-analysis[Publication Type] OR meta analysis[Title/Abstract] 

OR meta analysis[MeSH Terms] OR review[Publication Type] OR diagnosis[MeSH Subheading] OR 

associated[Title/Abstract] 

#5(clinical[TIAB] AND trial[TIAB]) OR clinical trials as topic[MeSH] OR clinical trial[Publication 

Type] OR random*[TIAB] OR random allocation[MeSH] OR therapeutic use[MeSH Subheading] 

#6 comparative study[pt] OR Controlled Clinical Trial[pt] OR quasiexperiment[TIAB] OR "quasi 

experiment"[TIAB] OR quasiexperimental[TIAB] OR "quasi experimental"[TIAB] OR quasi-

randomized[TIAB] OR "natural experiment"[TIAB] OR "natural control"[TIAB] OR "Matched 

control"[TIAB] OR (unobserved[TI] AND heterogeneity[TI]) OR "interrupted time series"[TIAB] 

OR "difference studies"[TIAB] OR "two stage residual inclusion"[TIAB] OR "regression 

discontinuity"[TIAB] OR non-randomized[TIAB] OR pretest-posttest[TIAB] 

#7 cohort studies[mesh:noexp] OR longitudinal studies[mesh:noexp] OR follow-up 

studies[mesh:noexp] OR prospective studies[mesh:noexp] OR retrospective studies[mesh:noexp] 

OR cohort[TIAB] OR longitudinal[TIAB] OR prospective[TIAB] OR retrospective[TIAB] 
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#8 Case-Control Studies[Mesh:noexp] OR retrospective studies[mesh:noexp] OR Control 

Groups[Mesh:noexp] OR (case[TIAB] AND control[TIAB]) OR (cases[TIAB] AND 

controls[TIAB]) OR (cases[TIAB] AND controlled[TIAB]) OR (case[TIAB] AND 

comparison*[TIAB]) OR (cases[TIAB] AND comparison*[TIAB]) OR "control group"[TIAB] OR 

"control groups"[TIAB] 

#9    #3 and #4 (will retrieve Reviews) 

#10  #3 and #5 (will retrieve RCTs) 

#11  #3 and #6 (will retrieve Quasi-experimental studies) 

#12  #3 and #7 (will retrieve Cohort studies) 

#13  #3 and #8 

#14  #9 or #10 or #11 or #12 or #13 

#15  #14 NOT (Animals[Mesh] NOT (Animals[Mesh] AND Humans[Mesh])) 
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Appendix 2: Detailed study eligibility criteria 
 

Abbreviations: TBD=to be determined 
* for the first report, we included modelling/simulation studies that investigated actual outbreaks of COVID-19 and met other 
eligibility criteria 

  

Characteristic Inclusion Criteria  Exclusion Criteria 

Publication date January 01, 2020 Prior to 2020 

Language English Languages other than English 

Study design Epidemiological / Ecological: experimental 
studies at the population or group level with a 
comparator 
Primary / Experimental:  quantitative with 
comparator 
Primary / Observational:  cohort, case-control, 
cross-sectional 
Modelling / Simulation: TBD* 

Opinions pieces: commentaries or 
editorials published in peer-reviewed 
journals 
Qualitative data 
Reviews: narrative and literature reviews; 
check references of systematic/rapid 
reviews or meta-analysis with relevant to 
any of the public health measures 

Population Involving animals or humans None 

Setting Indoor built environments such as:  office 
buildings, public buildings (schools, day cares), 
residential buildings, retail buildings (malls, 
restaurants), athletic facilities (gyms), transport 
vehicles (aircraft) or hubs (airports) 

Healthcare or clinical settings 

Intervention Ventilation systems in the built environment 
 
Filters or filtration features within mechanical 
ventilation systems 
 
[TBD for subsequent deliverables: (1) portable 
ventilators or air filtration devices that are not part 
of mechanical ventilation systems; (2) pure 
modelling studies with outcome of interest] 

Open air / outdoor environments  

Comparison Different rates and mechanisms (i.e., mechanical, 
natural, or filtration) of air dilution (including flow 
rates, air flow patterns, ratio of outdoor air to re-
used air) 
 
Different filter ratings 
 
Different combinations of ventilation and 
filtration strategies 

No comparison of ventilation parameters 

Outcome Primary: quantitative data evaluating virus 
transmission in reducing transmission of COVID-
19 (i.e., attack rates, reproduction number, etc.) 
Secondary: probability or risk of transmission or 
infection 
Negative effects, e.g., costs, inequities 

 Qualitative data 
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Appendix 3: Studies excluded at the last stages of reviewing 
 

Excluded – modelling studies with infection outcome (n = 55) 
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2022;29(4):1609-41. 

2. Abbas GM, Gursel Dino I. COVID-19 dispersion in naturally-ventilated classrooms: a study on inlet-
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3. Aganovic A, Bi Y, Cao G, Drangsholt F, Kurnitski J, Wargocki P. Estimating the impact of indoor 

relative humidity on SARS-CoV-2 airborne transmission risk using a new modification of the Wells-Riley 

model. Building and Environment. 2021;205. 

4. Aganovic A, Bi Y, Cao G, Kurnitski J, Wargocki P. Modeling the impact of indoor relative humidity on 

the infection risk of five respiratory airborne viruses. Sci Rep. 2022. 12. 11481. 

5. Ahmadzadeh M, Farokhi E, Shams M. Investigating the effect of air conditioning on the distribution and 

transmission of COVID-19 virus particles. Journal of Cleaner Production. 2021;316. 

6. Ahmadzadeh M, Shams M. Multi-objective performance assessment of HVAC systems and physical 

barriers on COVID-19 infection transmission in a high-speed train. Journal of Building Engineering. 

2022;53. 

7. Arjmandi H, Amini R, khani F, Fallahpour M. Minimizing the respiratory pathogen transmission: 

Numerical study and multi-objective optimization of ventilation systems in a classroom. Thermal Science 

and Engineering Progress. 2022;28. 

8. Arpino F, Grossi G, Cortellessa G, Mikszewski A, Morawska L, Buonanno G, et al. Risk of SARS-CoV-2 

in a car cabin assessed through 3D CFD simulations. 2022. 

9. Barbosa BPP, de Carvalho Lobo Brum N. Ventilation mode performance against airborne respiratory 
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Sci U S A. 2021;118(17). 

11. Brouwers JJH. Separation and Disinfection of Contagious Aerosols from the Perspective of SARS-CoV-

2. SEPARATIONS. 2021;8(10). 

12. Buonanno G, Morawska L, Stabile L. Quantitative assessment of the risk of airborne transmission of 

SARS-CoV-2 infection: Prospective and retrospective applications. Environ Int. 2020;145:106112. 

13. Buonanno G, Stabile L, Morawska L. Estimation of airborne viral emission: Quanta emission rate of 

SARS-CoV-2 for infection risk assessment. Environ Int. 2020;141:105794. 

14. Carlotti P, Massoulie B, Morez A, Villaret A, Jing L, Vrignaud T, et al. Respiratory pandemic and indoor 

aeraulics of classrooms. Building and Environment. 2022;212. 
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Appendix 4: Definitions 
 
Ventilation refers to dilution of indoor air with outdoor air. Air dilution can occur through natural means (e.g., 

opening windows or doors) or mechanical means (e.g., Heating, Ventilation and Air Condition [HVAC] systems). 

Improving ventilation helps to limit the number of infectious particles indoors by diluting indoor air with outdoor 

air that has fewer infectious particles. 

Air filtration refers to removing unwanted matter (e.g., particles, droplets) from the air stream by passing the 
airflow through fine mesh obstructions. In principle, some fraction of the unwanted matter will stay upstream of 
the filter and relatively cleaner air will flow downstream of the filter.  
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Appendix 5: Data extraction form 
 
Data extraction for studies reporting outcomes on effectiveness of ventilation in reducing COVID-19 
infections (Table 1) 

Data extraction category Data extraction element 

Reference details First author 
Date of publication 
Country of publication 

Study characteristics Design 
Intervention 
Key outcomes 
Agents assessed 

Population characteristics Sample description 

Results Summary of key findings in relation to infection/transmission outcome 

 
 
Data extraction for studies modelling COVID-19 outbreaks reporting on effectiveness of ventilation 
in reducing COVID-19 infections (Table 2) 

Data extraction category Data extraction element 

Reference details First author 
Date of publication 
Country of publication 

Study characteristics Objective/summary of study 
Description of methods/model 
Key outcomes 

Results Summary of key findings in relation to infection/transmission outcome 
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Appendix 6: Approach to critical appraisal 
 
For all epidemiological studies reporting on effectiveness of ventilation in reducing COVID-19 infections 
RoB will be assessed. For RCTs the ROB-2 will be applied and for observational studies the ROBINS-I tool 
will be applied. 
 
RoB-2 domains assessed 

Domain 1: Risk of bias arising from the randomization process 

Signaling questions Response options 

1.1 Was the allocation sequence random? Y / PY / PN / N / NI 

1.2 Was the allocation sequence concealed until participants were enrolled and 
assigned to interventions? 

Y / PY / PN / N / NI 

1.3 Did baseline differences between intervention groups suggest a problem with 
the randomization process? 

Y / PY / PN / N / NI 

Domain 2a: Risk of bias due to deviations from the intended interventions (effect of assignment to 
intervention) 

Signaling questions Response options 

2.1. Were participants aware of their assigned intervention during the trial? Y / PY / PN / N / NI 

2.2. Were carers and people delivering the 
interventions aware of participants’ assigned intervention during the trial? 

Y / PY / PN / N / NI 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended 
intervention that arose because of the trial context? 

NA / Y / PY / PN / N / NI 

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome? NA / Y / PY / PN / N / NI 

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced 
between groups? 

NA / Y / PY / PN / N / NI 

2.6 Was an appropriate analysis used to estimate the effect of assignment to 
intervention? 

Y / PY / PN / N / NI 

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) 
of the failure to analyse participants in the group to which they were randomized? 

NA / Y / PY / PN / N / NI 

Domain 2b: Risk of bias due to deviations from the intended interventions (effect of adhering to 
intervention) 

Signaling questions Response options 

2.1. Were participants aware of their assigned intervention during the trial? Y / PY / PN / N / NI 

2.2. Were carers and people delivering the interventions aware of participants&#39; 
assigned intervention during the trial? 

Y / PY / PN / N / NI 

2.3. [If applicable:] If Y/PY/NI to 2.1 or 2.2: Were important non-protocol 
interventions balanced across intervention groups? 

NA / Y / PY / PN / N / NI 

2.4. [If applicable:] Were there failures in implementing the intervention that could 
have affected the outcome? 

NA / Y / PY / PN / N / NI 

2.5. [If applicable:] Was there non-adherence to the assigned intervention regimen 
that could have affected participants’ outcomes? 

NA / Y / PY / PN / N / NI 

2.6. If N/PN/NI to 2.3, or Y/PY/NI to 2.4 or 2.5: Was an appropriate analysis 
used to estimate the effect of adhering to the intervention? 

NA / Y / PY / PN / N / NI 

Domain 3: Missing outcome data  

Signaling questions Response options 

3.1 Were data for this outcome available for all, or nearly all, participants 
randomized? 

Y / PY / PN / N / NI 

3.2 If N/PN/NI to 3.1: Is there evidence that the result was not biased by missing 
outcome data? 

NA / Y / PY / PN / N 

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true value? NA / Y / PY / PN / N / NI 

3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the NA / Y / PY / PN / N / NI 

Domain 4: Risk of bias in measurement of the outcome 

Signaling questions Response options 

4.1 Was the method of measuring the outcome inappropriate? Y / PY / PN / N / NI 

4.2 Could measurement or ascertainment of the outcome have differed between Y / PY / PN / N / NI 
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intervention groups? 

4.3 If N/PN/NI to 4.1 and 4.2: Were outcome assessors aware of the intervention 
received by study participants? 

NA / Y / PY / PN / N / NI 

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by 
knowledge of intervention received? 

NA / Y / PY / PN / N / NI 

4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced NA / Y / PY / PN / N / NI 

Domain 5: Risk of bias in selection of the reported result 

Signaling questions Response options 

5.1 Were the data that produced this result analysed in accordance with a pre-
specified analysis plan that was finalized before unblinded outcome data were 
available for analysis? 

Y / PY / PN / N / NI 

Is the numerical result being assessed likely to have been selected, on the basis of 
the results, from... 
5.2. ... multiple eligible outcome measurements (e.g. scales, definitions, time points) 
within the outcome domain? 

Y / PY / PN / N / NI 

5.3 ... multiple eligible analyses of the data? Y / PY / PN / N / NI 

 
ROBINS-I domains assessed 

Domain 1: Bias due to confounding 

Signaling questions Response options 

1.1 Is there potential for confounding of the effect of intervention in this study? 
If N/PN to 1.1: the study can be considered to be at low risk of bias due to 
confounding and no further signaling questions need be considered 

Y / PY / PN / N 

If Y/PY to 1.1: determine whether there is a need to assess time-varying 
confounding: 
1.2. Was the analysis based on splitting participants’ follow up time according to 
intervention received? If N/PN, answer questions relating to baseline confounding 
(1.4 to 1.6) If Y/PY, go to question 1.3. 

NA / Y / PY / PN / N / NI 

1.3. Were intervention discontinuations or switches likely to be related to factors 
that are prognostic for the outcome? 
If N/PN, answer questions relating to baseline confounding (1.4 to 1.6) 
If Y/PY, answer questions relating to both baseline and time-varying confounding 
(1.7 and 1.8) 

NA / Y / PY / PN / N / NI 

Questions relating to baseline confounding only 
1.4. Did the authors use an appropriate analysis method that controlled for all the 
important confounding domains? 

NA / Y / PY / PN / N / NI 

1.5. If Y/PY to 1.4: Were confounding domains that were controlled for measured 
validly and reliably by the variables available in this study? 

NA / Y / PY / PN / N / NI 

1.6. Did the authors control for any post-intervention variables that could have 
been affected by the intervention? 

NA / Y / PY / PN / N / NI 

Questions relating to baseline and time-varying confounding 
1.7. Did the authors use an appropriate analysis method that controlled for all the 
important confounding domains and for time-varying confounding? 

NA / Y / PY / PN / N / NI 

1.8. If Y/PY to 1.7: Were confounding domains that were controlled for measured 
validly and reliably by the variables available in this study? 

NA / Y / PY / PN / N / NI 

Domain 2: Bias in selection of participants into the study 

Signaling questions Response options 

2.1. Was selection of participants into the study (or into the analysis) based on 
participant characteristics observed after the start of intervention? 

Y / PY / PN / N / NI 
 

If N/PN to 2.1: go to 2.4 
2.2. If Y/PY to 2.1: Were the post-intervention variables that influenced selection 
likely to be associated with intervention? 

NA / Y / PY / PN / N / NI 

2.3 If Y/PY to 2.2: Were the post-intervention variables that influenced selection 
likely to be influenced by the outcome or a cause of the outcome? 

NA / Y / PY / PN / N / NI 

2.4. Do start of follow-up and start of intervention coincide for most participants? Y / PY / PN / N / NI 
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2.5. If Y/PY to 2.2 and 2.3, or N/PN to 2.4: Were adjustment techniques used that 
are likely to correct for the presence of selection biases? 

NA / Y / PY / PN / N / NI 

Domain 3: Bias in classifications of intervention 

Signaling questions Response options 

3.1 Were intervention groups clearly defined? Y / PY / PN / N / NI 

3.2 Was the information used to define intervention groups recorded at the start of 
the intervention? 

Y / PY / PN / N / NI 

3.3 Could classification of intervention status have been affected by knowledge of 
the outcome or risk of the outcome? 

Y / PY / PN / N / NI 

Domain 4: Bias due to deviations from intended interventions 

Signaling questions Response options 

4.1. Were there deviations from the intended intervention beyond what would be 
expected in usual practice? 

Y / PY / PN / N / NI 

4.2. If Y/PY to 4.1: Were these deviations from intended intervention unbalanced 
between groups and likely to have affected the outcome? 

NA / Y / PY / PN / N / NI 

4.3. Were important co-interventions balanced across intervention groups? Y / PY / PN / N / NI 

4.4. Was the intervention implemented successfully for most participants? Y / PY / PN / N / NI 

4.5. Did study participants adhere to the assigned intervention regimen? Y / PY / PN / N / NI 

4.6. If N/PN to 4.3, 4.4 or 4.5: Was an appropriate analysis used to estimate the 
effect of starting and adhering to the intervention? 

NA / Y / PY / PN / N / NI 

Domain 5: Bias due to missing data 

Signaling questions Response options 

5.1 Were outcome data available for all, or nearly all, participants? Y / PY / PN / N / NI 

5.2 Were participants excluded due to missing data on intervention status? Y / PY / PN / N / NI 

5.3 Were participants excluded due to missing data on other variables needed for 
the analysis? 

Y / PY / PN / N / NI 

5.4 If PN/N to 5.1, or Y/PY to 5.2 or 5.3: Are the proportion of participants and 
reasons for missing data similar across interventions? 

NA / Y / PY / PN / N / NI 

5.5 If PN/N to 5.1, or Y/PY to 5.2 or 5.3: Is there evidence that results were robust 
to the presence of missing data? 

NA / Y / PY / PN / N / NI 

Domain 6: Bias in measurement of outcomes 

Signaling questions Response options 

6.1 Could the outcome measure have been influenced by knowledge of the 
intervention received? 

Y / PY / PN / N / NI 

6.2 Were outcome assessors aware of the intervention received by study 
participants? 

Y / PY / PN / N / NI 

6.3 Were the methods of outcome assessment comparable across intervention 
groups? 

Y / PY / PN / N / NI 

6.4 Were any systematic errors in measurement of the outcome related to 
intervention received? 

Y / PY / PN / N / NI 

Domain 7: Bias in selection of the reported results 

Signaling questions Response options 

Is the reported effect estimate likely to be selected, on the basis of the results, 
from... 
7.1. ... multiple outcome measurements within the outcome domain? 

Y / PY / PN / N / NI 

7.2 ... multiple analyses of the intervention-outcome relationship? Y / PY / PN / N / NI 

7.3 ... different subgroups? Y / PY / PN / N / NI 

 
 

 


