

Noninvasive ventilation strategies for patients with severe or critical COVID-19

A rapid evidence review of clinical outcomes: Executive summary and Summary of Findings

Date of Literature Search: 5/15/2021 Date of Submission: 9/6/2021

Prepared By:

Shannon E. Kelly, University of Ottawa Heart Institute Becky Skidmore, Independent Information Scientist George Wells, University of Ottawa Heart Institute

Declarations of Interests

None declared.

Acknowledgments

The authors would like to acknowledge Vijay Shukla, Shuching Hsieh, and Nathan Orr for their contributions to this rapid evidence report. We would also like to acknowledge our patient/citizen partners Elaine Zibrowski and Maya Sterne for their review and feedback on our protocol and their ongoing support for knowledge translation activities.

Funding Acknowledgement(s)

The Strategy for Patient-Oriented Research Evidence Alliance (<u>SPOR EA</u>) is supported by the Canadian Institutes of Health Research (<u>CIHR</u>) under the Strategy for Patient-Oriented Research (<u>SPOR</u>) initiative.

This project was funded in part by the World Health Organization (PO 202642154).

This project was funded in part by an in-kind contribution from the Cardiovascular Research Methods Centre at the University of Ottawa Heart Institute.

General Disclaimer

This report was prepared by the Cardiovascular Research Methods Centre of the University of Ottawa Heart Institute on behalf of the SPOR Evidence Alliance. It was developed through the analysis, interpretation, and synthesis of scientific research assessments published in peer-reviewed journals, institutional websites, and other distribution channels. It also incorporates selected information provided by experts and patient/citizen partners with lived experience on the subject matter. This document may not fully reflect all the scientific evidence available at the time this report was prepared. Other relevant scientific findings may have been reported since completion of this synthesis report.

The SPOR Evidence Alliance and the project team make no warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, data, product, or process disclosed in this report. Conclusions drawn from or actions undertaken on the basis of, information included in this report are the sole responsibility of the user.

Protocol/Topic Registration:

This rapid evidence review was registered with the National Collaborating Centre for Methods and Tools (NCCMT) in May 2021 (<u>https://www.nccmt.ca/covid-19/covid-19-evidence-reviews/428</u>).

Abbreviations

AHRF	acute hypoxemic respiratory failure
ARDS	acute respiratory distress syndrome
BiPAP	bilevel positive airway pressure
CPAP	continuous positive airway pressure
HFNC	high flow nasal cannula
HFNO	high flow nasal oxygen
IMV	invasive mechanical ventilation
MA	meta-analysis
NIV	noninvasive mechanical ventilation
NMA	network meta-analysis
NPPV	negative positive pressure ventilation
ROB	risk of bias
RCT	randomized controlled trial
RR	rapid review ¹
SOT	standard oxygen therapy
SR	systematic review
WHO	World Health Organization

¹ RR abbreviation in Summary of Findings tables represents a relative risk/risk ratio

Noninvasive ventilation strategies for patients with severe or critical COVID-19

KEY FINDINGS

We located four RCTs reporting outcomes of interest in hospitalized patients with severe or critical COVID-19 and acute hypoxemic respiratory failure not needing emergent intubation (direct PICO).

In hospitalized patients with severe or critical COVID-19 and acute hypoxemic respiratory failure not needing emergent intubation, high flow nasal oxygen and continuous positive airway pressure ventilation may decrease mortality, invasive mechanical ventilation, and hospital or intensive care unit length of stay compared to standard oxygen therapy but findings are based on low quality of evidence.

Helmet noninvasive ventilation probably decreases invasive mechanical ventilation (moderate quality of evidence) but may increase patient discomfort compared to high flow nasal oxygen (low quality of evidence). Helmet noninvasive ventilation may decrease mortality and hospital or intensive care unit length of stay compared to high flow nasal oxygen but findings are based on low quality of evidence. We are uncertain whether continuous positive airway pressure ventilation increases or decreases mortality, invasive mechanical ventilation, and hospital or intensive care unit stay compared to high flow nasal oxygen.

We located 22 RCTs reporting outcomes of interest in hospitalized patients with acute respiratory distress syndrome (ARDS) and acute hypoxemic respiratory failure (AHRF) not needing emergent intubation (indirect PICO).

Additional data were available to compare helmet and facemask noninvasive ventilation and helmet and facemask continuous positive airway pressure for some outcomes, but evidence was not available for all comparisons of interest.

Compared to standard oxygen therapy:

- High flow nasal oxygen probably decreases mortality at 28 days, invasive mechanical ventilation and hospital length of stay (moderate quality of evidence).
- Facemask noninvasive ventilation probably decreases mortality at 30 days, invasive mechanical ventilation, and hospital or intensive care unit length of stay (moderate quality of evidence).
- Helmet continuous positive airway pressure may decrease in-hospital mortality and IMV but increase hospital length of stay (low quality of evidence).
- Facemask continuous positive airway pressure may decrease IMV and hospital length of stay (low quality of evidence) but we are uncertain whether in-hospital mortality is increased or decreased.

Compared to high flow nasal oxygen:

• Facemask noninvasive ventilation may increase mortality at 90 days, invasive mechanical ventilation and intensive care unit length of stay (low quality of evidence).

Helmet noninvasive ventilation may reduce mortality at 90 days and at one year, and hospital length of stay compared to facemask noninvasive ventilation (low quality of evidence).

Rapid evidence review approach for the direct PICO

Research question

In patients with severe or critical COVID-19, to what extent does high flow nasal oxygen (HFNO), continuous positive airway pressure (CPAP) or noninvasive ventilation (NIV) impact the need for invasive mechanical ventilation (IMV), hospital length of stay, and death compared to standard oxygen therapy (SOT) or against each other?

Methods overview

We conducted a rapid review of the evidence for noninvasive ventilation strategies and implemented the population, intervention, comparator, outcomes (PICO) framework to formulate the research question (Table E1):

Population	Hospitalized patients with severe or critical COVID-19 and acute hypoxemic respiratory failure not needing emergent intubation ^a
Intervention	 High flow nasal oxygen Continuous positive airway pressure (facemask or helmet) Noninvasive ventilation via facemask (or other non-helmet interfaces including nasal, oronasal, and full facial mask) Noninvasive ventilation via helmet
Comparators	Standard oxygen therapyAny intervention
Outcomes	Primary: Mortality (within 30, 60, 90 days, and longer if data available), need for invasive mechanical ventilation, hospital length of stay Secondary: Intensive care unit length of stay Patient-identified outcomes of interest: Patient comfort, satisfaction with care
Eligible study designs	Systematic/rapid reviews ^b to identify eligible trials, randomized controlled trials ^c

Table E1: PICO framework

a-patients weaned off IMV or who require respiratory support following IMV are not in scope.

b-eligible SR/RRs had to directly address ventilation support for two or more interventions/comparators in the PICO.

c-eligible RCTs had to directly compare two or more interventions/comparators in the PICO and at least one outcome.

Table E2 provides a summary of the methods used for this rapid evidence assessment. Additional details are provided in the full rapid evidence report.

Table E2: Summary of Methods

Search	Systematic/rapid reviews used to identify eligible trials
review/rapid	Targeted search of COVID-19 meta-databases
reviews)	 WHO COVID-19 database Living Overviews of Evidence (LOV/E) platform
May 2-3, 2021	 COVID-END inventory of best evidence syntheses for clinical management
Search (randomized controlled trials)	 Top-up of recent RCTs published since date of last systematic review/rapid review search WHO COVID-19 register Cochrane COVID-19 register Clinicaltrials.gov
May 15, 2021	International Clinical Trials Registry Platform ^a
	(Citation tracking and included references checked July 29, 2021)
Screening and selection	Single reviewer screened records using Covidence
	 When they met the population, intervention, comparator, outcome: Completed randomized controlled trials from systematic/rapid reviews were included in this review Completed randomized controlled trials identified during the top-up search were included in this review
Data tabulation	Single reviewer with checking by a second reviewer
	 Study characteristics and reported outcome data carried forward from the systematic/rapid reviews where possible Top-up randomized controlled trials extracted <i>de novo</i>
Quality/ROB	Single reviewer with checking by a second
	Systematic/rapid reviews rapidly assessed using 'Assessing the Methodological Quality of Systematic Reviews (AMSTAR) 2' tool
	Randomized controlled trial risk of bias assessments were retrieved and carried forward for eligible randomized controlled trials from the systematic/rapid reviews
	New randomized controlled trials with no previous risk of bias assessment were rapidly appraised by single reviewer with checking by a second and assisted by RobotReviewer ^b
Synthesis	Meta-analysis (pairwise for each primary and secondary outcome)
	Descriptive synthesis of patient-identified outcomes
Summary of	Single reviewer with checking by a second reviewer
nnaings	Summary of Findings tables created with focus on indirectness, imprecision, and risk of bias
Involvement of citizen partners	Reviewed and provided input on the population, intervention, comparator, and outcome. Added patient-reported outcomes. Review and co-author related report sections. Co-produce a patient-specific knowledge translation product

a: Planned but not executed due to availability of the database.

b: <u>https://www.robotreviewer.net/</u> (last accessed August 4, 2021). Use of this software was planned but not executed due to availability of the application.

Rapid evidence review findings for the direct PICO

We located **four randomized controlled trials (RCTs)**¹⁻⁴ of noninvasive ventilation strategies in hospitalized patients with severe or critical COVID-19 and acute hypoxemic respiratory failure not requiring emergent intubation.

This evidence was collected using the included study lists of **three relevant systematic reviews**²⁹⁻ ³³, **four rapid reviews**³⁴⁻³⁷ **and a top-up search** of bibliographic databases for more recent RCTs.

Complete results are presented in the rapid evidence report and the available evidence for noninvasive ventilation strategies is summarized using Summary of Findings tables for the direct PICO.

PICO = population, intervention, comparator, outcome

Identified systematic reviews

Three systematic reviews (SRs) reported in five records were identified²⁹⁻³³.

Identified rapid reviews

Four additional rapid reviews (RRs) using a range of accepted 'rapid review' methods were identified for inclusion³⁴⁻³⁷. No randomized controlled trials (RCTs) directly evaluating the use of noninvasive ventilation strategies in COVID-19 patients were identified from the RRs.

Results from the top-up search

A top-up search identified one RCT of helmet NIV compared to HFNO in patients with COVID-19⁴. Of the 847 potentially relevant study registration records retrieved, none reported RCTs relevant to the PICO that were reported to be complete with results available.

Evidence from identified randomized controlled trials

Table E3 includes an overview of key study and patient characteristics for the four included RCTs¹⁻⁴. Table E3: Summary of included RCTs

Study/Design	Population	Country/Setting	Interventions	Outcomes reported
Li et al. 2020 ³ two-arm, parallel RCT N=72	Patients with severe coronavirus pneumonia complicated with acute respiratory failure	China, isolation ward of a single centre	HFNO [n=37] Standard oxygen therapy [n=35]	Mechanical ventilation at 12 h No patient-reported outcomes
Grieco et al. 2021 ⁴ HENIVOT	Patients admitted to the intensive care unit with COVID-19–induced	Italy, ICUs in four centres	Helmet NIV [n=55] HFNO [n=54]	Intubation, 28 d Hospital LOS

Study/Design	Population	Country/Setting	Interventions	Outcomes reported	
two-arm, parallel RCT N=109	moderate to severe hypoxemic respiratory failure			ICU LOS Patient-reported: Device-related	
				discomon	
Perkins et al. 2021 ²	Hospitalized adults with	United Kingdom, 75 bospitals	CPAP [n=380]	Mortality, 30 d	
RECOVERTING	due to COVID-19 were	75 Hospitais	HFNO [n=417]	Intubation, 30 d	
three-arm, adaptive RCT	deemed suitable for tracheal intubation if		Standard oxygen	Tracheal intubation	
N=1272	treatment escalation		therapy [n=475]	during the study period	
	was required		(primary comparisons were CPAP to	Critical care (ICU) LOS	
			standard oxygen and	Hospital LOS	
			oxygen)	No patient-reported outcomes	
Teng et al. 2021 ¹	Patients diagnosed with	China, single	HFNO [n=12]	Mortality (indirect)	
two-arm, parallel RCT	severe COVID-19.	severe COVID-19.	centre	Standard oxygen	Hospital LOS
N= 22				ICU LOS	
				No patient-reported outcomes	

d=days; h=hours; HFNO=high flow nasal oxygen; ICU=intensive care unit; LOS=length of stay; RCT=randomized controlled trial; QoL=quality of life.

Summary of findings tables for the direct PICO

HFNO vs SOT¹⁻³

Population: Hospitalized patients with severe or critical COVID 19 and AHRF not needing emergent intubation Intervention: HFNO

Comparator: SOT	
-----------------	--

Outcome Study results and measurements		Absolute effect estimates		Certainty of the Evidence	Plain language	
		SOT	HFNO	(Quality of evidence)	summary	
Mortality, 30 d	Relative risk: 0.95 (CI 95% 0.75 - 1.19)	195 per 1000	185 per 1000	Low	HFNO may decrease	
	Based on data from 807 patients in 2 studies		0 fewer per 1000 fewer - 37 more)	inconsistency ¹	mortality at 30 days	
IMV	Relative risk: 0.96 (CI 95% 0.81 - 1.13)	395 per 1000	379 per 1000	Low	HFNO may decrease	
	Based on data from 854 patients in 2 studies	Difference: 16 fewer per 1000 (CI 95% 75 fewer - 51 more)		inconsistency, imprecision ²	IMV	
Hospital LOS	Measured by: Scale: - Lower better	16.85 days Mean	16.34 days Mean	Low	HFNO may decrease	
	Based on data from 804 patients in 2 studies	Differenc (CI 95% 3.65)	e: 0.51 fewer fewer - 2.55 more)	and inconsistency ³	hospital LOS	
ICU LOS	Measured by: Scale: - Lower better	7.2 days Mean	6.99 days Mean	Low	HFNO may decrease	
	Based on data from 804 patients in 2 studies	Differenc (CI 95% 2.0 f	e: 0.21 fewer ewer - 1.58 more)	and inconsistency ⁴	ICU LOS	

1. Inconsistency: serious. Point estimates vary widely (One RCT not estimable due to zero events in both study arms); Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: serious. Wide confidence intervals;

2. Inconsistency: serious. The magnitude of statistical heterogeneity was high, with I^2: 67%.; Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: serious. Wide confidence intervals;

 Risk of Bias: no serious. One RCT high risk of selection bias. Second RCT has unclear risk of bias for LOS due to no reported outcome denominators in largest study. Estimates were calculated using denominators from other study reported outcomes (incomplete data), Incomplete data and/or large loss to follow up; Inconsistency: serious. The magnitude of statistical heterogeneity was high, with I²: 65%; Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: serious. Wide confidence intervals, Wide confidence intervals;

4. Risk of Bias: no serious. One RCT high risk of selection bias. Second RCT has unclear risk of bias for LOS due to no reported outcome denominators in largest study. Estimates were calculated using denominators from other study reported outcomes (incomplete data); Inconsistency: serious. The magnitude of statistical heterogeneity was high, with I^2: 65%; Imprecision: serious. SD larger than mean.

CPAP vs SOT²

Population: Hospitalized patients with severe or critical COVID 19 and AHRF not needing emergent intubation Intervention: CPAP

Comparator: SOT

Outcome Study results and		Absolute effect estimates		Certainty of the Evidence	Plain language
	measurements	SOT	CPAP	(Quality of evidence)	summary
Mortality, 30 d	Relative risk: 0.87 (CI 95% 0.64 - 1.18)	192 per 1000	167 per 1000	Moderate	CPAP probably
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Based on data from 737 patients in 1 studies	Difference: 2 (CI 95% 69	5 fewer per 1000 fewer - 35 more)	Due to serious imprecision ¹	decreases mortality at 30 days
IMV	Relative risk: 0.81 (CI 95% 0.67 - 0.98)	413 per 1000	335 per 1000	Moderate	CPAP probably
Base	Based on data from 733 patients in 1 studies	Difference: 78 (CI 95% 136	8 fewer per 1000 i fewer - 8 fewer)	Due to serious imprecision ²	decreases IMV
Hospital LOS	Measured by: Scale: - Lower better	17.3 days Mean	16.34 days Mean	Moderate	CPAP probably
	Based on data from 737 patients in 1 studies	Differenc (CI 95% 3.59	e: 0.96 fewer fewer - 1.67 more)	Due to serious imprecision ³	decreases hospital LOS
ICU LOS	Measured by: Scale: - Lower better	9.6 days Mean	9.52 days Mean	Moderate	CPAP probably has little
	Based on data from 737 patients in 1 studies	Differenc (CI 95% 2.23	e: 0.08 fewer fewer - 2.07 more)	Due to serious imprecision ⁴	LOS

1. Inconsistency: no serious. Unclear influence of group crossover and co-interventions; Imprecision: serious. Wide confidence intervals, Only data from one study;

2. Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: serious. Only data from one study;

 Risk of Bias: no serious. Unclear risk of bias for LOS due to no reported outcome denominators in largest study. Estimates were calculated using denominators from other study reported outcomes (incomplete data); Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: serious. Wide confidence intervals, Only data from one study;

4. Risk of Bias: no serious. Unclear risk of bias for LOS due to no reported outcome denominators in largest study. Estimates were calculated using denominators from other study reported outcomes (incomplete data); Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: serious. Wide confidence intervals, only data from one study.

HELMET NIV vs HFNO⁴

Population: Hospitalized patients with severe or critical COVID 19 and AHRF not needing emergent intubation Intervention: Helmet NIV

Comparator: HFNO

Outcome	Study results and	Absolute effect estimates		Certainty of the Evidence	Plain language	
	measurements	HFNO	Helmet NIV	(Quality of evidence)	summary	
Mortality, 28 d	Relative risk: 0.8 (Cl 95% 0.34 - 1.87)	182 per 1000	146 per 1000	Low	Helmet NIV may	
	Based on data from 110 patients in 1 study	Difference: 36 fewer per 1000 (CI 95% 120 fewer - 158 more)		imprecision ¹	decrease mortality at 28 days	
Mortality, 60 d	Relative risk: 1.1 (Cl 95% 0.55 - 2.2)	236 per 1000	260 per 1000	Low	Helmet NIV may	
	Based on data from 110 patients in 1 study	Difference: 2 (CI 95% 106	24 more per 1000 fewer - 283 more)	imprecision ²	decrease mortality at 60 days	
IMV	Relative risk: 0.54 (Cl 95% 0.32 - 0.89)	509 per 1000	275 per 1000	Moderate	Helmet NIV probably	
	Based on data from 110 patients in 1 study	Difference: 234 fewer per 1000 (CI 95% 346 fewer - 56 fewer)		Due to serious imprecision ³	decreases IMV	
Hospital LOS	Measured by: Scale: - Lower better	22 days Median	16 days Median	Low	Helmet NIV may	
	Based on data from 110 patients in 1 study	Difference: 6 fewer (CI 95% 14 fewer - 1 more)		imprecision ⁴	decrease hospital LOS	
ICU LOS	Measured by: Scale: - Lower better	10 days Median	4 days Median	Low	Helmet NIV may	
	Based on data from 110 patients in 1 study	Difference: 6 fewer (CI 95% 13 fewer - 1 more)		imprecision ⁵	decrease ICU LÓS	
Device-related	Measured by: Scale: - Lower better	1.8 VAS points Mean	3.7 VAS points Mean	Low	Helmet NIV may	
discomfort	Based on data from 110 patients in 1 study) Difference: 1.9 higher (CI 95% 1.4 higher - 2.5 higher)		Due to serious risk of bias, imprecision ⁶	increase device-related discomfort	
Mortality, 90 d		No studies	were found that looked	at mortality at 90 days ⁷	•	

1. Risk of Bias: no serious. Selective outcome reporting; Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study;

2. Risk of Bias: no serious. Selective outcome reporting; Indirectness: no serious. Unclear influence of group crossover and co-interventions; Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study;

3. Imprecision: serious. Only data from one study, Low number of patients;

4. Risk of Bias: serious. Incomplete data (medians/IQR by group reported with absolute difference in means compared); Imprecision: serious. Low number of patients, Only data from one study;

5. Risk of Bias: serious. Incomplete data (medians/IQR by group reported with absolute difference in means compared); Imprecision: serious. Low number of patients, Only data from one study;

Noninvasive ventilation strategies for patients with severe or critical COVID-19

- 6. Risk of Bias: serious. post hoc outcome assessment, multiple time points collected, but not reported; Imprecision: serious. Low number of patients, Only data from one study;
- 7. Risk of Bias: very serious. Selective outcome reporting (outcome planned but not reported).

CPAP vs HFNO

One three-arm pragmatic RCT reported outcomes for CPAP and HFNO² but did not compare these interventions directly in the planned analyses. All patients did not have the opportunity to be randomized to all arms due to the availability of these interventions by centre (thereby making direct comparison unfeasible). To inform the clinical guideline panel discussions, we have provided an exploratory estimate for CPAP compared to HFNO using an indirect treatment comparison.

Population: Hospitalized patients with severe or critical COVID 19 and AHRF not needing emergent intubation Intervention: CPAP

		Absolute effect estimates				
Outcome Study results a				Certainty of the Evidence	Plain language	
	measurements	HFNO	СРАР	(Quality of evidence)	summary	
Mortality, 30 d	Relative risk: 0.95 (CI 95% 0.52 - 1.71)	188 per 1000	179 per 1000	Very low Due to serious risk of bias,	We are uncertain whether CPAP	
	patients in 1 study	Difference: 9 fewer per 1000 (CI 95% 90 fewer - 133 more)		indirectness, and imprecision ¹	mortality at 30 days	
IMV	Relative risk: 0.69 (Cl 95% 0.43 - 1.09)	411 per 1000	284 per 1000	Very low	We are uncertain whether CPAP	
	Based on data from 791 patients in 1 study	Difference: 127 (CI 95% 234 fe	fewer per 1000 ewer - 37 more)	indirectness, and imprecision ²	increases or decreases IMV	
Hospital LOS	Measured by: Scale: - Lower better	18.3 days Mean	16.63 days Mean	Very low	We are uncertain whether CPAP	
	Based on data from 791 patients in 1 study	Difference: 1.67 fewer (CI 95% 5.43 fewer - 2.09 more)		Due to serious risk of blas, indirectness, and imprecision ³	increases or decreases hospital LOS	
ICU LOS	Measured by: Scale: - Lower better	10.5 days Mean	9.48 days Mean	Very low Due to serious risk of bias,	We are uncertain whether CPAP	
	Based on data from 791 patients in 1 study	Difference: (CI 95% 3.97 fe	: 1.02 fewer wer - 1.93 more)	indirectness, and serious imprecision⁴	increases or decreases ICU LOS	

1. Risk of Bias: serious. Incomplete data and post hoc comparison: CPAP and HFNO were not available to all study participants and this comparison was not made in the RCT.; Indirectness: serious. Direct comparisons not available; Imprecision: serious. Only data from one study;

2. Risk of Bias: serious. Indirectness: serious. Direct comparisons not available; Imprecision: serious. Only data from one study;

3. Risk of Bias: serious. Indirectness: serious. Direct comparisons not available; Imprecision: serious. Low number of patients, Only data from one study, Wide confidence intervals;

4. Risk of Bias: serious. Indirectness: serious. Direct comparisons not available; Imprecision: serious. Only data from one study.

Rapid evidence review approach for the indirect PICO

Research Question

In patients with acute respiratory distress syndrome (ARDS) and acute hypoxemic respiratory failure (AHRF), to what extent does high flow nasal oxygen (HFNO), continuous positive airway pressure (CPAP) or noninvasive ventilation (NIV) impact the need for invasive mechanical ventilation (IMV), hospital length of stay and death compared to standard oxygen therapy (SOT) or against each other?

Methods overview

Table E4: PICO framework

Due to the uncertainty in the randomized controlled trial (RCT) evidence in severe or critical COVID-19 populations, we completed an additional rapid evidence review for noninvasive ventilation strategies in non-COVID patients with ARDS and AHRF. We implemented the population, intervention, comparator, outcomes (PICO) framework to formulate the research question (Table E4):

Population	Patients hospitalized with acute respiratory distress syndrome and acute hypoxemic respiratory failure that do not require emergent intubation ^a		
Intervention	 High flow nasal oxygen Continuous positive airway pressure Noninvasive ventilation via facemask (or other non-helmet interfaces including nasal, oronasal, and full facial mask) Noninvasive ventilation via helmet 		
Comparators	Standard of care (conventional oxygen therapy) or any other intervention		
Outcomes	 Primary: Mortality (within 30, 60, 90 days, and longer if data available), need for invasive mechanical ventilation, hospital length of stay Secondary: ICU length of stay Patient-identified outcomes of interest: Patient comfort, satisfaction with care 		
Eligible study designs	Systematic/rapid reviews ^b to identify eligible trials, randomized controlled trials ^c		

a-patients weaned off IMV or who require respiratory support following IMV are not in scope.

b-eligible SR/RRs had to directly address ventilation support for two or more interventions/comparators in the PICO.

c-eligible RCTs had to directly compare two or more interventions/comparators in the PICO and at least one outcome.

We followed a similar rapid evidence review approach as for hospitalized patients with severe or critical COVID-19 and AHRF, with differences summarized below in Table E5.

Table E5: Methods overview: Differences from direct PICO

Search (Systematic reviews/rapid reviews) <i>May 18, 2021</i>	 Systematic reviews/rapid reviews used to identify relevant randomized controlled trials A targeted search of meta-databases Epistemonikos database² of systematic reviews for health decision-making (includes Cochrane reviews) Living Overviews of Evidence (L.OVE) Platform
Search (randomized controlled trials) <i>May 19, 2021</i>	 Top-up of recent randomized controlled trials published since date of last systematic/rapid review search Clinicaltrials.gov International Clinical Trials Registry Platform^a Cochrane CENTRAL (Citation tracking and included randomized controlled trial reference lists checked July 29, 2021) Date of latest systematic review/rapid review search in included randomized controlled trials for top-up: December 1, 2020

a: Planned but not executed due to availability of the database. COCHRANE CENTRAL searched instead as a post hoc study registry substitution.

² <u>https://www.epistemonikos.org/en/about_us/methods</u> Noninvasive ventilation strategies for patients with severe or critical COVID-19

Rapid evidence review findings for the indirect PICO

We located **22 completed randomized controlled trials (RCTs)**⁵⁻²⁶ **in 24 reports**⁵⁻²⁸ of noninvasive ventilation support in hospitalized patients with acute respiratory distress syndrome (ARDS) and acute hypoxemic respiratory failure (AHRF) not requiring emergent intubation.

This evidence was collected using the included study lists of **four systematic reviews (SRs)**^{32,38-} ⁴⁰. A top-up search of study registry databases found no eligible RCTs.

Complete results for clinical outcomes are presented in the rapid evidence report and the available evidence for noninvasive ventilation strategies for the indirect PICO is summarized using Summary of Findings tables.

None of the included SRs included RCTs relevant to the indirect PICO with patient-reported outcomes such as comfort or satisfaction with care.

PICO = population, intervention, comparator, outcome

Identified systematic reviews

We identified four relevant systematic reviews (SRs) (included in 7 published reports)^{32,38-43}.

Evidence from randomized controlled trial eligibility

After screening all individual RCTs included in the four relevant SRs (n=74), a total of 22 RCTs (in 24 reports)⁵⁻²⁸ matching our indirect PICO were included in the rapid evidence review for the indirect PICO.

A top-up search for literature published between Dec 1, 2020 and June 1, 2021, identified a total of 1926 records. No additional RCTs were identified.

Summary of findings tables for the indirect PICO

HNFO vs SOT^{5,8,14,18,19,27}

Population: Hospitalized patients with ARDS and AHRF not needing emergent intubation Intervention: HFNO

Comparator: SOT	0				
Outcome	Study results and	Absolute effect estimates		Certainty of the Evidence	Plain language
	measurements	SOT	HFNO	(Quality of evidence)	summary
Mortolity 28 d	Relative risk: 0.99 (Cl 95% 0.82 - 1.19)	361 per 1000	357 per 1000	Moderate	HFNO probably
, , , , , , , , , , , , , , , , , , ,	Based on data from 776 patients in 1 study	Difference: 4 fewer per 1000 (CI 95% 65 fewer - 69 more)		Due to serious imprecision ¹	decreases mortality at 28 days
Mortality, 90 d	Relative risk: 0.92 (CI 95% 0.63 - 1.32)	189 per 1000	174 per 1000	Low	HFNO may decrease
	Based on data from 522 patients in 2 studies	Difference: 15 fewer per 1000 (CI 95% 70 fewer - 60 more)		imprecision ²	mortality at 90 days
IMV	Relative risk: 0.74 (CI 95% 0.56 - 0.99)	207 per 1000	153 per 1000	Moderate	HFNO probably
	Based on data from 668 patients in 4 studies	Difference: 54 fewer per 1000 (CI 95% 91 fewer - 2 fewer)		Due to serious indirectness ³	decreases IMV
Mortality, any⁴	Relative risk: 0.98 (CI 95% 0.83 - 1.15)	291 per 1000	285 per 1000	Low	HFNO may decrease
	Based on data from 1344 patients in 4 studies	Difference: 6 fewer per 1000 (CI 95% 49 fewer - 44 more)		imprecision ⁵	mortality
Hospital LOS	Measured by: Scale: - Lower better	16.26 days Median	15.09 days Median	Moderate	HFNO probably
	Based on data from 998 patients in 2 studies	Difference: 1.17 fewer (CI 95% 3.16 fewer - 0.83 more)		Due to serious imprecision ⁶	decreases hospital LOS
ICU LOS	Based on data from 996 patients in 2 studies	Studies were	not pooled	Low Due to very serious inconsistency ⁷	HFNO may have little or no difference on ICU LOS

1. Imprecision: serious. Wide confidence intervals, Only data from one study;

2. Inconsistency: serious. The magnitude of statistical heterogeneity was high, with I^2: 80%.; Imprecision: serious. Wide confidence intervals;

3. Indirectness: serious. Differences between the population of interest and those studied;

4. Longest duration mortality data available, includes mix of hospital and end of study (EOS) outcomes

Inconsistency: no serious. The magnitude of statistical heterogeneity was moderate, with I²: 44%.; Indirectness: serious. Differences between the population of interest and those studied (some mixed, some immunocompromised), Differences between the outcomes of interest (timing); Imprecision: serious. Wide confidence intervals;

6. **Imprecision: serious.** Wide confidence intervals;

7. Inconsistency: very serious. The magnitude of statistical heterogeneity was high, with I^2: 85%, the direction of the effect is not consistent between the included studies.

FACEMASK NIV vs SOT 6,10,13-17,20,24-27

Population: Hospitalized patients with ARDS and AHRF not needing emergent intubation Intervention: Facemask NIV

Comparator: SOT

Outcome	Study results and measurements	Absolute effect estimates		Certainty of the Evidence	Plain language
		SOT	Facemask NIV	(Quality of evidence)	summary
IMM	Relative risk: 0.74 (Cl 95% 0.64 - 0.86)	416 per 1000	308 per 1000	Moderate	Facemask NIV probably
	Based on data from 1166 patients in 10 studies	Difference: 108 fewer per 1000 (CI 95% 150 fewer - 58 fewer)		Due to serious inconsistency ¹	decreases IMV
Mortality 30 d	Relative risk: 0.88 (CI 95% 0.62 - 1.25)	273 per 1000	240 per 1000	Moderate	Facemask NIV probably
	Based on data from 374 patients in 1 study	Difference: 33 fewer per 1000 (CI 95% 104 fewer - 68 more)		Due to serious imprecision ²	decreases mortality at 30 days
Mortality, 60 d	Relative risk: 0.7 (CI 95% 0.31 - 1.58)	357 per 1000	250 per 1000	Low	Facemask NIV may
	Based on data from 56 patients in 1 study	Difference: 107 fewer per 1000 (CI 95% 246 fewer - 207 more)		imprecision ³	days
Mortality, 90 d	Relative risk: 0.87 (Cl 95% 0.58 - 1.3)	375 per 1000	326 per 1000	Very low	We are uncertain whether facemask NIV
	Based on data from 395 patients in 3 studies	Difference: 49 fewer per 1000 (CI 95% 158 fewer - 113 more)		indirectness, imprecision ⁴	increases or decreases mortality at 90 days
Mortality, any	Relative risk: 0.83 (CI 95% 0.71 - 0.96)	347 per 1000	288 per 1000	Moderate	Facemask NIV probably
	Based on data from 1254 patients in 11 studies	Difference: 59 fewer per 1000 (CI 95% 101 fewer - 14 fewer)		Due to serious indirectness ⁵	decreases mortality
Hospital LOS	Measured by: Scale: - Lower better	20.51 days Median	18.49 days Median	Moderate	Facemask NIV probably
	Based on data from 829 patients in 6 studies	Difference: 2.02 fewer (CI 95% 4.39 fewer - 0.35 more)		Due to serious inconsistency ⁶	decreases hospital LOS
ICU LOS	Measured by: Scale: - Lower better	9.43 days Median	7.82 days Median	Moderate	Facemask NIV probably
	Based on data from 1152 patients in 10 studies	Difference: 1.61 fewer (CI 95% 3.21 fewer - 0.03 fewer)		Due to serious inconsistency ⁷	decreases ICU LOS

1. Inconsistency: serious. The magnitude of statistical heterogeneity was high, with I^2: 57%. Variation in timepoint IMV outcome was assessed at;

2. Indirectness: no serious. Differences between the population of interest and those studied (100% immunocompromised population); Imprecision: serious. Wide confidence intervals, Low number of patients, Only data from one study;

3. Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study;

4. Inconsistency: serious. The magnitude of statistical heterogeneity was moderate, with I^2: 58%.; Indirectness: serious. Direct comparisons not made in one RCT and so crude data used to estimate the comparison; Imprecision: serious. Wide confidence intervals;

Noninvasive ventilation strategies for patients with severe or critical COVID-19

- Indirectness: serious. Combined in-hospital and longer duration mortality at varying time points; 5.
- 6. 7. Inconsistency: serious. The magnitude of statistical heterogeneity was moderate, with I^2:55%;
- Inconsistency: serious. The magnitude of statistical heterogeneity was high, with I/2: 75%.

HELMET CPAP vs SOT^{9,11,23}

Population: Hospitalized patients with ARDS and AHRF not needing emergent intubation Intervention: Helmet CPAP

Comparator: SOT

Outcome	Study results and measurements	Absolute effect estimates		Certainty of the Evidence	Plain language
		SOT	Helmet CPAP	(Quality of evidence)	summary
IMV	Relative risk: 0.45 (Cl 95% 0.15 - 1.34)	102 per 1000	46 per 1000	Low	Helmet CPAP may
	Based on data from 168 patients in 3 studies	Difference: 56 fewer per 1000 (CI 95% 87 fewer - 35 more)		imprecision ¹	decrease IMV
In-hospital mortality	Relative risk: 0.23 (Cl 95% 0.1 - 0.55)	250 per 1000	58 per 1000	Low	Helmet CPAP may
	Based on data from 168 patients in 3 studies	Difference: 192 fewer per 1000 (CI 95% 225 fewer - 112 fewer)		imprecision ²	mortality
Hospital LOS	Measured by: Scale: - Lower better	14 days Median	14.5 days Median	Low	Helmet CPAP may
	Based on data from 81 patients in 1 study	Difference: 0.5 more (CI 95% 3.75 fewer - 4.75 more)		Due to very serious imprecision ³	increase hospital LOS
ICU LOS	No studies were found that looked at ICU LOS				

1. Inconsistency: serious. The magnitude of statistical heterogeneity was high, with I^2: 55%; Imprecision: serious. Low number of patients, Wide confidence intervals;

 Risk of Bias: no serious. One trial stopped earlier than scheduled, potential for overestimating benefits; Indirectness: serious. One trial of patients with hematologic malignancies, Differences between the outcomes of interest (30d or longer) and those reported (in-hospital); Imprecision: serious. Low number of patients;

3. Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study.

FACEMASK CPAP vs SOT¹²

Population: Hospitalized patients with ARDS and AHRF not needing emergent intubation Intervention: Facemask CPAP

Comparator: SOT

Outcome	Study results and measurements	Absolute effect estimates		Certainty of the Evidence	Plain language
		SOT	Facemask CPAP	(Quality of evidence)	summary
In-hospital mortality	Relative risk: 0.71 (CI 95% 0.38 - 1.32) Based on data from 123 patients in 1 study	295 per 1000 Difference: 8	209 per 1000 6 fewer per 1000	Very low Due to serious indirectness and very serious imprecision ¹	We are uncertain whether facemask CPAP increases or decreases in-hospital
		(CI 95% 183	fewer - 94 more)		mortality
IMV	Relative risk: 0.86 (Cl 95% 0.54 - 1.37)	393 per 1000	338 per 1000	Low	Facemask CPAP may decrease IMV
	Based on data from 123 patients in 1 study	Difference: 5 (CI 95% 181	5 fewer per 1000 fewer - 145 more)	Due to very serious imprecision ²	
Hospital LOS	Measured by: Scale: - Lower better	16 days Median	14 days Median	Low	Facemask CPAP may
	Based on data from 81 patients in 1 study	Difference: 2 fewer (CI 95% 17.5 fewer - 13.5 more)		Due to very serious imprecision ³	decrease hospital LOS
ICU LOS	Measured by: Scale: - Lower better	9 days Median	9 days Median	Low	Facemask CPAP may
	Based on data from 81 patients in 1 study	Difference: 0 fewer (CI 95% 8.89 fewer - 8.89 more)		Due to very serious imprecision ⁴	have little or no difference on ICU LOS

1. Indirectness: serious. Differences between the outcomes of interest (30d or longer) and those reported (in-hospital); Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study;

Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study; Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study; 2.

3.

Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study. 4.

FACEMASK NIV vs HFNO^{7,14,22}

Population: hospitalized patients with ARDS and AHRF who do not need emergent intubation Intervention: Facemask NIV

Comparator: HFNO

Outcome	Study results and measurements	Absolute effect estimates		Certainty of the Evidence	Plain language	
Timeframe		HFNO	Facemask NIV	(Quality of evidence)	summary	
Mortality 90 d	Relative risk: 2.3 (CI 95% 1.27 - 4.15)	123 per 1000	283 per 1000	Low	Facemask NIV may	
	Based on data from 216 patients in 1 study	Difference: 160 more per 1000 (CI 95% 33 more - 387 more)		Due to very serious imprecision ¹	increase mortality at 90 days	
IMV	Relative risk: 1.22 (CI 95% 0.94 - 1.59)	364 per 1000	444 per 1000	Low	Facemask NIV may	
	Based on data from 316 patients in 3 studies	Difference: 80 more per 1000 (CI 95% 22 fewer - 215 more)		Due to serious risk of bias, imprecision ²	increase IMV	
In-hospital mortality	Relative risk: 1.15 (CI 95% 0.55 - 2.43)	265 per 1000	305 per 1000	Very low	We are uncertain whether facemask NIV	
	Based on data from 70 patients in 1 study	Difference: 40 more per 1000 (CI 95% 119 fewer - 379 more)		serious imprecision ³	increases or decreases in-hospital mortality	
Hospital LOS	No studies were found that looked at hospital LOS					
ICU LOS	Measured by: Scale: - Lower better	12.8 days Median	13.35 days Median	Low	Facemask NIV may	
	Based on data from 216 patients in 1 study	Difference: 0.55 more (CI 95% 3.16 fewer - 4.26 more)		Due to very serious imprecision ⁴	increase ICU LOS	

1. Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study;

2. Risk of Bias: serious. two of three trials have unclear sequence generation and concealment of allocation during randomization process (one abstract only at high risk of bias with incomplete data); Imprecision: serious. Low number of patients, Wide confidence intervals;

3. Indirectness: serious. Differences between the outcomes of interest (30d or longer) and outcome reported (in-hospital); Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study;

4. Imprecision: very serious. Wide confidence intervals, Low number of patients, Only data from one study.

HELMET NIV versus FACEMASK NIV^{21,28}

Population: Hospitalized patients with ARDS and AHRF not needing emergent intubation Intervention: Helmet NIV

Comparator: Facemask NIV

Outcome	Study results and measurements	Absolute effect estimates		Certainty of the Evidence	Plain language	
		Facemask NIV	Helmet NIV	(Quality of evidence)	summary	
Mortality 90 d	Relative risk: 0.6 (CI 95% 0.37 - 0.99)	564 per 1000	338 per 1000	Low	Helmet NIV may	
	Based on data from 83 patients in 1 studies	Difference: 226 fewer per 1000 (CI 95% 355 fewer - 6 fewer)		Due to very serious imprecision ¹	decrease mortality at 90 days	
Mortality, 1 yr	Relative risk: 0.62 (CI 95% 0.42 - 0.93)	692 per 1000	429 per 1000	Low	Helmet NIV may	
	Based on data from 83 patients in 1 studies	Difference: 263 fewer per 1000 (CI 95% 401 fewer - 48 fewer)		Due to very serious imprecision ²	year	
IMV	Relative risk: 0.3 (CI 95% 0.15 - 0.58)	615 per 1000	185 per 1000	Low Due to very serious imprecision ³	Helmet NIV may decrease IMV	
	Based on data from 83 patients in 1 studies	Difference: 430 f (CI 95% 523 few	ewer per 1000 er - 258 fewer)			
Hospital LOS	Measured by: Scale: - Lower better	7.8 days Median	2.7 days Median	Low	Helmet NIV may	
	Based on data from 83 patients in 1 studies	Difference: 5.1 fewer (CI 95% 9.38 fewer - 0.82 fewer)		Due to very serious imprecision ⁴	decrease hospital LOS	
	No studies were found that looked at ICU LOS					
100 203						
1. Imprecision: very serious. Low number of patients, Only data from one study;						

2. Imprecision: very serious. Low number of patients, Only data from one study;

3. Imprecision: very serious. Low number of patients, Only data from one study;

4. Imprecision: very serious. Low number of patients, Only data from one study.

References

- 1. Teng Xb, Shen Y, Han Mf, Yang G, Zha L, Shi Jf. The value of high-flow nasal cannula oxygen therapy in treating novel coronavirus pneumonia. *European journal of clinical investigation.* 2021;51:e13435-n/a.
- 2. Perkins GD, Ji C, Connolly BA, et al. An adaptive randomized controlled trial of non-invasive respiratory strategies in acute respiratory failure patients with COVID-19. *medRxiv*. 2021:2021.08.02.21261379.
- 3. Li M KC, Han H, et al. Effect of transnasal high-flow humidifying oxygen therapy for the treatment of new coronavirus pneumonia with acute respiratory failure. *Chinese Journal of Coal Industry Medicine.* 2020;23:221-4.
- 4. Grieco DL, Menga LS, Cesarano M, et al. Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. *JAMA*. 2021;325:1731-43.
- 5. Andino R, Vega G, Pacheco SK, et al. High-flow nasal oxygen reduces endotracheal intubation: a randomized clinical trial. *Ther Adv Respir Dis.* 2020;14:1753466620956459.
- 6. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. *JAMA*. 2000;283:235-41.
- 7. Azevedo JR, Montenegro WS, Leitao AL, Silva MM, Prazeres JS, Maranhao JP. High flow nasal cannula oxygen (hfnc) versus non-invasive positive pressure ventilation (nippv) in acute hypoxemic respiratory failure. a pilot randomized controlled trial. *Intensive Care Medicine Experimental*. 2015;3.
- Azoulay E, Lemiale V, Mokart D, et al. Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute Respiratory Failure: The HIGH Randomized Clinical Trial. JAMA. 2018;320:2099-107.
- 9. Brambilla AM, Aliberti S, Prina E, et al. Helmet CPAP vs. oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. *Intensive Care Med.* 2014;40:942-9.
- 10. Confalonieri M, Potena A, Carbone G, Porta RD, Tolley EA, Umberto Meduri G. Acute respiratory failure in patients with severe community-acquired pneumonia. A prospective randomized evaluation of noninvasive ventilation. *Am J Respir Crit Care Med.* 1999;160:1585-91.
- 11. Cosentini R, Brambilla AM, Aliberti S, et al. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: a randomized, controlled trial. *Chest.* 2010;138:114-20.
- 12. Delclaux C, L'Her E, Alberti C, et al. Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: A randomized controlled trial. *JAMA*. 2000;284:2352-60.
- 13. Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. *Am J Respir Crit Care Med.* 2003;168:1438-44.
- 14. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. *N Engl J Med.* 2015;372:2185-96.
- 15. He H, Sun B, Liang L, et al. A multicenter RCT of noninvasive ventilation in pneumonia-induced early mild acute respiratory distress syndrome. *Crit Care.* 2019;23:300.
- 16. Hernandez G, Fernandez R, Lopez-Reina P, et al. Noninvasive ventilation reduces intubation in chest traumarelated hypoxemia: a randomized clinical trial. *Chest.* 2010;137:74-80.
- 17. Hilbert G, Gruson D, Vargas F, et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. *N Engl J Med.* 2001;344:481-7.
- 18. Jones PG, Kamona S, Doran O, Sawtell F, Wilsher M. Randomized Controlled Trial of Humidified High-Flow Nasal Oxygen for Acute Respiratory Distress in the Emergency Department: The HOT-ER Study. *Respir Care.* 2016;61:291-9.

Noninvasive ventilation strategies for patients with severe or critical COVID-19

- 19. Lemiale V, Mokart D, Mayaux J, et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial. *Crit Care.* 2015;19:380.
- 20. Lemiale V, Mokart D, Resche-Rigon M, et al. Effect of Noninvasive Ventilation vs Oxygen Therapy on Mortality Among Immunocompromised Patients With Acute Respiratory Failure: A Randomized Clinical Trial. *JAMA*. 2015;314:1711-9.
- 21. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. *JAMA*. 2016;315:2435-41.
- 22. Shebl E, Embarak S. High-flow nasal oxygen therapy versus noninvasive ventilation in chronic interstitial lung disease patients with acute respiratory failure. *The Egyptian Journal of Chest Diseases and Tuberculosis.* 2018;67.
- 23. Squadrone V, Massaia M, Bruno B, et al. Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy. *Intensive Care Med.* 2010;36:1666-74.
- Wermke M, Schiemanck S, Hoffken G, Ehninger G, Bornhauser M, Illmer T. Respiratory failure in patients undergoing allogeneic hematopoietic SCT--a randomized trial on early non-invasive ventilation based on standard care hematology wards. *Bone Marrow Transplant.* 2012;47:574-80.
- 25. Wysocki M, Tric L, Wolff MA, Millet H, Herman B. Noninvasive pressure support ventilation in patients with acute respiratory failure. A randomized comparison with conventional therapy. *Chest.* 1995;107:761-8.
- 26. Zhan Q, Sun B, Liang L, et al. Early use of noninvasive positive pressure ventilation for acute lung injury: a multicenter randomized controlled trial. *Crit Care Med.* 2012;40:455-60.
- 27. Frat J-P, Ragot S, Girault C, et al. Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. *The Lancet Respiratory Medicine*. 2016;4:646-52.
- 28. Patel BK, Wolfe KS, MacKenzie EL, et al. One-Year Outcomes in Patients With Acute Respiratory Distress Syndrome Enrolled in a Randomized Clinical Trial of Helmet Versus Facemask Noninvasive Ventilation. *Crit Care Med.* 2018;46:1078-84.
- 29. Thomas R, Lotfi T, Morgano GP, Darzi A, Reinap M. Update Alert 2: Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19. *Ann Intern Med.* 2020;173:W152-w3.
- 30. Schunemann HJ, Khabsa J, Solo K, et al. Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence. *Ann Intern Med.* 2020;173:204-16.
- 31. Rochwerg B, Solo K, Darzi A, et al. Update Alert: Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19. *Ann Intern Med.* 2020;173:W122.
- 32. Lewis SR, Baker PE, Parker R, Smith AF. High-flow nasal cannulae for respiratory support in adult intensive care patients. *Cochrane Database Syst Rev.* 2021;3:CD010172.
- 33. Agarwal A, Basmaji J, Muttalib F, et al. High-flow nasal cannula for acute hypoxemic respiratory failure in patients with COVID-19: systematic reviews of effectiveness and its risks of aerosolization, dispersion, and infection transmission. *Canadian Journal of Anesthesia/Journal canadien d'anesthésie.* 2020;67:1217-48.
- 34. Radovanovic D, Coppola S, Franceschi E, et al. Mortality and clinical outcomes in patients with COVID-19 pneumonia treated with non-invasive respiratory support: A rapid review. *Journal of critical care.* 2021;65:1-8.
- 35. Effectiveness of non-invasive ventilation in the treatment of acute respiratory failure due to coronavirus: SWEDISH AGENCY FOR HEALTH TECHNOLOGY ASSESSMENT AND ASSESSMENT OF SOCIAL SERVICES;2020.

- 36. EVIDENCE CHECK: Continuous Positive Airway Pressure (CPAP) machines What is the current advice regarding for use of CPAP as a substitute for ventilators during the New South Wales Health, Australia;2020.
- 37. COVID-19 Scientific Advisory Group Rapid Response Report Updates on Recommended Use of Non-invasive Ventilation in AHS Acute Care Facilities During the COVID-19 Pandemic: Alberta Health Services;2020.
- 38. Yasuda H, Okano H, Mayumi T, Nakane M, Shime N. Association of noninvasive respiratory support with mortality and intubation rates in acute respiratory failure: a systematic review and network meta-analysis. *Journal of Intensive Care.* 2021;9:32.
- Ferreyro BL, Angriman F, Munshi L, et al. Association of Noninvasive Oxygenation Strategies With All-Cause Mortality in Adults With Acute Hypoxemic Respiratory Failure: A Systematic Review and Meta-analysis. JAMA. 2020;324:57-67.
- 40. Baldomero AK, Melzer AC, Greer N, et al. Effectiveness and Harms of High-Flow Nasal Oxygen for Acute Respiratory Failure: An Evidence Report for a Clinical Guideline From the American College of Physicians. *Ann Intern Med.* 2021;174:952-66.
- 41. Baldomero AK, Melzer A, Greer N, Majeski BN, Macdonald R, Wilt TJ. Effectiveness and harms of high-flow nasal oxygen (HFNO) for acute respiratory failure: a systematic review protocol. *BMJ Open.* 2020;10:e034956.
- 42. Ferreyro BL, Angriman F, Munshi L, et al. Noninvasive oxygenation strategies in adult patients with acute respiratory failure: a protocol for a systematic review and network meta-analysis. *Syst Rev.* 2020;9:95.
- 43. Ferreyro BL, Angriman F, Scales DC. Noninvasive Oxygenation Strategies for Acute Hypoxemic Respiratory Failure-Reply. *JAMA*. 2020;324:1906-7.