

Strategy for Patient-Oriented Research

The effects of vaccination in immunocompromised people

Systematic review of research studies on immunogenicity, safety, and efficacy/effectiveness of COVID-19 vaccines in immunocompromised individuals

Date of Literature Search: 7/7/2021 Date of Submission: 8/25/2021

> Prepared By: Dr. Paul Moayyedi

Contact:

Farncombe Family Digestive Health Research Institute, McMaster University 200 Main St. W. HSC 3V3, Hamilton ON Canada L8N 3Z5

Email: moayyep@mcmaster.ca

SPOR Evidence Alliance Strategy for Patient-Oriented Research Alliance pour des données probantes de la SRAP +

Land Acknowledgement(s)

SPOR Evidence Alliance operates from the St. Michael's Hospital, Unity Health Toronto which is located on the traditional land of the Huron-Wendat, the Seneca, and the Mississaugas of the Credit. Today, this meeting place is still the home to many Indigenous people from across Turtle Island.

COVID-END is housed within McMaster University which is located on the traditional territories of the Mississauga and Haudenosaunee nations, and within the lands protected by the "Dish With One Spoon" wampum, an agreement to peaceably share and care for the resources around the Great Lakes.

We are grateful to have the opportunity to work on these lands.

Funding Acknowledgement(s)

The SPOR Evidence Alliance (*SPOR EA*) is supported by the Canadian Institutes of Health Research (*CIHR*) under the Strategy for Patient-Oriented Research (*SPOR*) initiative.

COVID-19 Evidence Network to support Decision-making (*COVID-END*) is supported by the Canadian Institutes of Health Research (*CIHR*) through the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding opportunity.

Project Contributors

Aida Fernandes – Project Manager Cathy Yuan – Information Specialist Christie Yuan – Research Associate Yasamin Farbod – Research Associate Rapat Pittayanon – Research Associate. Takeshi Kanno – Research Associate

General Disclaimer

This report was prepared by the Cochrane Gut Review Group on behalf of the SPOR Evidence Alliance and COVID-END. It was developed through the analysis, interpretation, and synthesis of scientific research and/or health technology assessments published in peer-reviewed journals, institutional websites, and other distribution channels. It also incorporates selected information provided by experts and patient/citizen partners with lived experience on the subject matter. This document may not fully reflect all the scientific evidence available at the time this report was prepared. Other relevant scientific findings may have been reported since completion of this synthesis report.

SPOR Evidence Alliance, COVID-END and the project team make no warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, data, product, or process disclosed in this report. Conclusions drawn from, or actions undertaken on the basis of, information included in this report are the sole responsibility of the user.

Table of Contents

Abbreviations and Definitionsiv
Abbreviationsiv
Key Definitions:iv
EXECUTIVE SUMMARY
Introduction
Methods
Results
Efficacy of COVID-19 vaccination in preventing SARS-CoV2 infection in the immunocompromised 17
Immunogenicity of COVID-19 vaccination in the immunocompromised and dialysis patients
Immunogenicity in persons living with Human Immunodeficiency Virus
Immunogenicity in patients taking immunosuppressive therapy
Immunogenicity in patients with malignancy
Immunogenicity in transplant patients52
Immunogenicity in patients with a primary immune deficiency
Immunogenicity in dialysis patients62
Influence of prior COVID in the immunogenicity of COVID-19 vaccination in the immunocompromised
Efficacy of BNT162b2 versus mRNA-1273 for seroconversion in the immunocompromised
Immunogenicity of a third dose of COVID-19 vaccination74
Safety of COVID-19 vaccination in immunocompromised and dialysis patients
Conclusion8 ²
Appendix 1: Additional figures
References

probantes de la SRAP 🕈

Abbreviations and Definitions

Abbreviations

- BNT162b2 (Pfizer-BioNTech) ٠
- mRNA-1273 (Moderna) ٠
- AZD1222 (ChAdOx1) (AstraZeneca-Oxford) •
- Ad26.COV2.S (Janssen (Johnson & Johnson)) ٠
- N/A = not applicable٠
- N/R = not recorded
- RCT = randomized controlled trials ٠
- Anti-S = antibody to Spike Protein ٠
- Anti-RBD = antibody to Receptor Binding Domain of the Spike Protein ٠
- IMM = immunocompromised •
- CVID = Combined Variable Immune Deficiency
- XLA = X-Linked Agammaglobulinemia
- HIV. = human immunodeficiency virus ٠
- IBD = inflammatory bowel disease •
- ٠ RA = rheumatoid arthritis
- SLE = systemic lupus erythematosus •
- MS = multiple sclerosis
- IMM = immunosuppressive therapy ٠
- HM = hematological malignancy •
- CLL = chronic lymphocytic leukemia
- CML = chronic myeloid leukemia •
- NHL = non-Hodgkins lymphoma
- Allo-HCST = allogeneic hematopoietic stem cell transplant ٠
- RR = relative risk٠
- 95% CI = 95% confidence interval •

Key Definitions:

- Age in tables refers to median or mean age (whichever given in the paper)
- Days, weeks and months given in table refers to median or mean (whichever given in the paper)

EXECUTIVE SUMMARY

Objectives: Vaccination against COVID-19 may be less efficacious in immunocompromised and dialysis patients. We evaluated this in a systematic review of the efficacy, immunogenicity, and safety of vaccines in the immunocompromised and those on dialysis.

Design: This was a rapid systematic review and meta-analysis.

Methods: Two reviewers assessed studies for eligibility and performed data extraction independently. Proportions were calculated for case series and relative risk for comparative studies with 95% confidence intervals and synthesised using a random effects model.

Results: There is approximately a 10% reduction in vaccine efficacy in the immunocompromised compared to the healthy population although overall the vaccine offers approximately 80% protection compared to the immunocompromised that are not vaccinated. Immunogenicity of COVID-19 vaccination is not impacted in persons living with HIV. There is a modest reduction in immunogenicity of COVID-19 vaccination in those with solid malignancy, those taking immunosuppressive therapy and dialysis patients. There is a moderate reduction in immunogenicity is severely impaired in transplant patients with hematological malignancy. Immunogenicity is severely impaired in transplant patients and in some patients with a primary immune deficiency. Prior COVID-19 infection increases immunogenicity and mRNA-1273 is slightly more efficacious than BNT162b2 in terms of seroconversion. A third vaccine modestly increases seroconversion in dialysis patients but is more effective in transplant patients. There are no safety concerns with COVID-19 vaccinations in the immunocompromised or in dialysis patients and overall, these groups may experience less adverse events than the healthy population. A more detailed summary of the results is given in the table below.

Conclusions: COVID-19 vaccination is modestly less efficacious in the immunocompromised and immunogenicity data would suggest transplant patients are particularly vulnerable. A third vaccination increases seroconversion.

Strategy for Patient-Oriented Research

Summary of the certainty of the evidence

Outcome	Studies included	Overall certainty of the evidence (GRADE)	Key findings
Risk of infection in the vaccinated immunocompromised compared to the healthy population	3 cohort studies, 7,283,329 participants and 20,087 COVID cases at follow up 2 case control studies involving 498,203 negative and 15,997 positive cases	⊕⊖⊖⊖ Very low ¹	Case control and cohort suggested 90% vaccine efficacy (VE) in the healthy. In the immunocompromised VE was 79% in cohort studies and 88% in case control studies
Immunogenicity of vaccination in persons living with HIV	Second vaccination efficacy evaluated in 6 cohort studies involving 1,241 participants	⊕⊕⊖⊖ Low²	RR =1.00 (95% CI 0.98 to 1.02) no difference between persons living with HIV and healthy controls
Immunogenicity of vaccination in patients taking immunosuppressive therapy	Second vaccination efficacy evaluated in 28 cohort studies with 5,644 participants. Eight case series.	⊕○○○ Very low ¹	76% seroconverted. RR = 0.78 (95% CI 0.72 to 0.85) Approximately a 20% reduction in seroconversion in patients taking immunosuppressive therapy
Immunogenicity of vaccination in solid malignancy patients	Second vaccination efficacy evaluated in 7 cohort studies with 1,365 participants. Six case series.	⊕○○○ Very low ¹	93% seroconverted. RR = 0.92 (95% CI 0.85 to 1.00) Approximately an 8% reduction in seroconversion in solid malignancy patients
Immunogenicity of vaccination in hematological malignancy patients	Second vaccination efficacy evaluated in 15 cohort studies with 3,973 participants. 16 case series.	⊕○○○ Very low ¹	61% seroconverted. RR = 0.62 (95% CI 0.54 to 0.71) Approximately a 40% reduction in seroconversion in hematological malignancy patients
Immunogenicity of vaccination in transplant patients	Second vaccination efficacy evaluated in 23 cohort studies with 3,883 participants. 10 case series.	⊕⊕⊖⊖ Low ²	31% seroconverted. RR = 0.33 (95% CI 0.26 to 0.42) Approximately a 70% reduction in seroconversion in transplant patients

Strategy for Patient-Oriented Research

Immunogenicity of vaccination in patients with primary immune deficiency	Vaccination efficacy evaluated in 3 cohort studies with 291 participants.	⊕⊖⊖⊖ Very low ³	RR = 0.33 (95% CI 0.11 to 1.02). Approximately a 70% reduction in seroconversion in patients with primary immune deficiencies.
Immunogenicity of vaccination in dialysis patients	Second vaccination efficacy evaluated in 14 cohort studies with 3,573 participants. 18 case series.	⊕⊖⊖⊖ Very low¹	89% seroconverted. RR = 0.86 (95% CI 0.82 to 0.91) Approximately a 10% reduction in seroconversion in dialysis patients
Influence of prior COVID infection on seroconversion	27 cohort studies with 7,174 patients	⊕○○○ Very low ¹	RR seroconverting if had prior COVID = 1.36 (95% CI 1.24 to 1.50). Prior COVID increases probability that will seroconvert
Immunogenicity of BNT162b2 versus mRNA-1273	23 cohort studies with 7,046 patients	⊕⊕⊖⊖ Low ²	RR seroconverting if had BNT162b2 = 0.94 (95% CI 0.90 to 0.97). mRNA- 1273 slightly more effective at seroconverting.
Immunogenicity of a third vaccination	10 before after studies and one RCT with 2,217 patients	⊕⊕⊕⊖ Moderate ⁴	Overall absolute increase in seroconversion of 14% (95 % CI 7 to 22%). Seroconversion increase was 5% in dialysis patients and 23% in transplant patients
Safety of vaccination in immunocompromised and dialysis patients	11 cohort studies with 3,479 patients	⊕⊕⊖⊖ Low ²	Overall adverse events lower in immunocompromised or dialysis patients compared to healthy controls (RR = 0.66; 95% CI 0.54 to 0.80)

¹The GRADE approach gives the quality of evidence of observational studies as low and further downgraded because of risk of bias of many of the included studies and heterogeneity.

²The GRADE approach gives the quality of evidence of observational studies as low. No further reason to downgrade or upgrade the evidence.

³The GRADE approach gives the quality of evidence of observational studies as low but this was downgraded further for heterogeneity and imprecision.

⁴The GRADE approach gives the quality of evidence of RCTs as high but this was downgrade for imprecision. The observational studies added additional support for this quality assessment.

probantes de la SRAP +

Introduction

Research Question

What is the effectiveness, immunogenicity, and safety of COVID-19 vaccines in immunocompromised persons and patients on dialysis?

Rationale

COVID-END finds and uses the best available evidence available to support decision-making about COVID-19 pandemic response. To this end, this report summarizes the current evidence regarding the effects of vaccinations in immunocompromised individuals. Specifically, this rapid review synthesizes the body of evidence on the immunogenicity, safety, and efficacy/effectiveness of COVID-19 vaccines in immunocompromised persons to inform decisions regarding booster vaccinations.

PICOST Framework

	Inclusion Criteria	Exclusion Criteria
Population	Immunocompromised individuals, as defined by persons with HIV infection, primary immune or complement deficiency, malignancy, transplant, or on immunosuppressive therapy. Also, individuals on dialysis (including hemodialysis and peritoneal dialysis) are included.	
Intervention	COVID-19 vaccines which Canada has currently authorized for use: BNT162b2 (Pfizer- BioNTech); mRNA-1273 (Moderna); AZD1222 (ChAdOx1) (AstraZeneca- Oxford) and Ad26.COV2.S (Johnson & Johnson).	Vaccines not approved in Canada
Comparisons	Healthy controls or disease controls (for immunosuppression e.g. inflammatory bowel disease – outcome of vaccines in those with and without immunosuppressive therapy)	

Outcomes	 Immunogenicity: Humoral immune responses (e.g. binding antibodies, neutralizing antibodies); Safety: Overall adverse events Individual events of interest Effectiveness: confirmed SARS-CoV- 2 infection (PCR or serologic); asymptomatic infection, symptomatic COVID-19 disease; hospitalizations due to COVID-19; ICU admissions due to COVID-19; deaths due to COVID- 19 	
Setting	Population through to tertiary care	
Study designs	Interventional trials, cohort, case-control, or before after studies. Case series with at least 100 participants for efficacy and safety and 10 participants for immunogenicity	Case reports Case series with <100 participants for efficacy and safety and <10 participants for immunogenicity

probantes de la SRAP 🕈

Methods

Search

A daily scan of the literature (published and preprint) is conducted by the Emerging Science Group at the Public Health Agency of Canada (PHAC). The scan has compiled COVID-19 literature since the beginning of the outbreak and is updated daily. Searches to retrieve relevant COVID-19 literature are conducted in Pubmed, Scopus, BioRxiv, MedRxiv, ArXiv, SSRN, Research Square and cross-referenced with the COVID-19 information centers run by Lancet, BMJ, Elsevier, Nature and Wiley using key terms: COVID-19, SARS-CoV-2, SARS-Coronavirus-2, nCov, "novel CoV", (novel AND coronavirus). Daily alerts from Epistemonikos' L-OVE and McMaster PLUS are also scanned. For this report, the search is up to date as of August 11, 2021. The Evidence Xtraction Team for Research Analysis (EXTRA) team at PHAC performed a first level screening of titles and abstracts in DistillerSR by a single reviewer using a combination of manual review and DistillerAI's natural language processing technology. A second reviewer screened full text results of potentially relevant articles to identify articles on COVID-19 vaccines in immunocompromised persons or persons on dialysis. Following this initial screening, 316 potentially relevant titles were identified for further screening.

We reviewed any items tagged as being on autoimmune populations or other chronic conditions, as well as searching all fields for the following terms:

immunocompromised OR immunosuppressed OR immunosuppression OR immunosuppressive OR immunosuppressives OR autoimmune OR cancer OR cancers OR solid tumor OR solid tumors OR solid tumour OR solid tumours OR chemotherapy OR malignancies OR leukemia OR HIV OR rheumatic OR rheumatoid arthritis OR multiple sclerosis OR dialysis OR hemodialysis OR hemodialysis OR transplant OR transplants OR biologic OR biologics OR anti-interleukins OR anti-interleukin OR corticosteroids OR kinase inhibitors OR kinase inhibitor OR calcineurin inhibitors OR calcineurin inhibitor OR mTOR inhibitor OR mTOR inhibitors OR IMDH inhibitors OR IMDH inhibitor OR monoclonal antibodies OR immunotherapy OR immunotherapies OR immunodeficiency* OR immune deficienc* OR anti-CD38 OR anti-CD20 OR calcineurin inhibitor OR calcineurin inhibitors OR disease-modifying OR DMT OR DMTs OR cytotoxic.

Reviewing these tagged items generated a further 54 relevant titles. Furthermore, the following bibliographic databases were searched: Medline (OVID), EMBASE, and Cochrane Controlled trials register to ensure no studies were missed.

Study Selection Criteria

English-language, peer-reviewed sources and sources published ahead-of-print before peer review were included. The types of studies that were eligible to be considered in this rapid review included Interventional trials, cohort, case-control, or before after studies. Case series were also included provided they included at least 100 participants for efficacy and safety and at least 10 for immunogenicity

SPOR Evidence Alliance Strategy for Patient Orlented Research Alliance pour des données

probantes de la SRAP 🕈

After a pilot test, two reviewers independently screened titles as potentially eligible and all studies that at least one reviewer considered eligible was formally assessed. This was again be done by two independent reviewers according to eligibility criteria and any disagreements were resolved by the senior lead.

Data Extraction

Data relevant to the research question, such as study design, setting, location, population characteristics, interventions or exposure and outcomes were extracted when reported.

Data were extracted by one reviewer and the second reviewer verified key elements related to the outcomes of interest after pilot testing. Data that were extracted included, setting, countries, population (type of immunocompromised patients), intervention (stratified by vaccine platform (e.g. mRNA, viral vector), vaccine product, dose: after 1 dose and/or 2 doses of a 2-dose series; 3rd dose (booster dose), interval between dose 1 and 2 of a 2-dose series (manufacture-recommended interval vs extended interval), and interval between completed vaccination series and additional booster dose.

Data Synthesis

We synthesized the results narratively due to the variation in methodology and outcomes for the included studies.

We synthesized data calculating relative risk (for comparative studies) and synthesizing with a random effects model. Case series data were presented as rates and again were synthesized with a random effects model.

Appraisal of Evidence Quality

We evaluated the quality of included evidence using critical appraisal tools as indicated by the study design below. Quality assessment was completed by one reviewer and verified by a second reviewer. Conflicts were resolved through consensus.

The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) (Schünemann et al., 2013) approach was used to assess the certainty in the findings based on eight key domains.

In the GRADE approach to quality of evidence, observational studies, as included in this review, provide low quality evidence, and this assessment can be further reduced based on other domains:

- High risk of bias
- Inconsistency in effects
- Indirectness of interventions/outcomes
- Imprecision in effect estimate
- Publication bias

SPOR Evidence Alliance Strategy for Pattern Orlented Research Alliance pour des données

probantes de la SRAP 🕈

and can be upgraded based on:

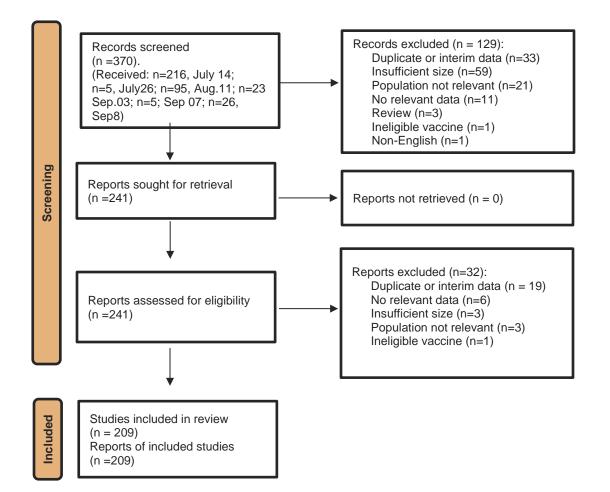
- Large effect
- Dose-response relationship
- Accounting for confounding.

The overall certainty in the evidence for each outcome was determined taking into account the characteristics of the available evidence (observational studies, some not peer-reviewed, unaccounted-for potential confounding factors, different tests and testing protocols, lack of valid comparison groups). A judgement of 'overall certainty is very low' means that the findings are very likely to change as more evidence accumulates.

Risk of Bias Assessment

The tools used for assessing risk of bias were the Cochrane Risk of Bias (ROB 2) for randomized controlled trials and the Cochrane ROBINS-I tool for observational studies.

Completed quality assessments for each included study are available on request.


Results

There were 370 titles screened (1-370). Of these, 161 studies were excluded (62 were excluded for being too small, 52 were duplicate or interim, in 41 the population or data were not relevant, and 6 other reasons). The remaining 209 titles were eligible to be included in the review. A list of included and excluded studies are given in Tables 1 and 2.

Figure 1: Flow Diagram of Study Selection

Identification of studies via databases and registers

SPOR Evidence Alliance Strategy for Patient-Oriented Research

Strategy for Patient-Oriented Research

Table 1. Ineligible studies

Reference	Author	Reasons for exclusion
1	Gerber 2021	Insufficient size
2	Lee E-J 2021	Population not relevant and insufficient size
5	Goupil 2021	Duplicate of 106
6	Kanji 2021	Population not relevant
8	Konstantinidis 2021	Population not relevant
11	Manekis 2021	Duplicate of 137
12	Monin-Aldama 2021	Duplicate of 143
14	Shinde 2021	Duplicate of 34
16	Thakkar 2021	Duplicate of 28
17	Palich 2021	Duplicate of 41
21	Capetti 2021	No relevant data
25	Addeo 2021	Duplicate of 46
26	Spencer 2021	No relevant data
30	Aleman 2021	Insufficient size
33	Pacifico 2021	Insufficient size
34	Shinde 2021	Ineligible vaccine
35	Wong 2021	Duplicate of 15
36	Anand 2021	Duplicate of 32
37	Dailey 2021	No relevant data
39	Albach 2021	Insufficient size
42	Zee 2021	Population not relevant
43	Cherian 2021	Population not relevant
44	Achiron 2021	Duplicate of 45
48	Agrita 2021	Insufficient size
50	Ali 2021	Insufficient size
52	Au 2021	Insufficient size
55	Basic-Jukic 2021	Insufficient size
61	Boekel 2021	Duplicate of 229
62	Bonelli 2021	Insufficient size
64	Botwin 2021	Duplicate 63
65	Boyarsky 2021	population not relevant
66	Boyarsky 2021	Duplicate of 13
67	Boyarsky 2021	Duplicate of 23

68	Boyarsky 2021	Duplicate of 66
69	Boyarsky 2021	Duplicate of 66
70	Braun-Moscovici 2021	Duplicate of 71
72	Buttari 2021	Insufficient size
73	Caillard 2021	Insufficient size
74	Ceccarelli 2021	Insufficient size
76	Chilimuri 2021	review
77	Chodick 2021	Duplicate of 79
79	Cohen 2021	Duplicate of 81
80	Cohen 2021	Duplicate of 79
82	Connolly 2021	Duplicate of 23
83	Damiani 2021	Insufficient size
86	Del Bello 2021	Insufficient size
88	Dolff 2021	Insufficient size
89	Donadio 2021	Insufficient size
92	Elder 2021	Insufficient size
93	Eifer 2021	No outcome of interest
96	Crick 2021	Narrative review of a study
98	Frater 2021	Duplicate of 99
101	Furer 2021	Population not relevant and insufficient size
102	Gallo 2021	Insufficient size
103	Garcia 2021	Insufficient size
111	Haberman 2021	Duplicate of 110
115	Harrington 2021	Duplicate of 118
117	Harrington 2021	Duplicate of 116
123	Jalali 2021	Insufficient size
124	Kamar 2021	Duplicate of 259
125	Kennedy 2021	Duplicate of 7
126	Keshavarz 2021	Insufficient size
127	Kahyat-Khoei 2021	Insufficient size
128	Kahyat-Khoei 2021	Duplicate of 127
129	Konstantinidis 2021	Duplicate of 8
133	Lim 2021	No relevant data
134	Lim 2021	Duplicate of 133
136	Lustig 2021	No relevant data
137	Maneikis 2021	Duplicate of 11
142	Mitsunaga 2021	Population not relevant and insufficient size

144	Montoya 2021	Insufficient size
148	Narasimhan 2021	Duplicate of 147
149	Nawimana 2021	Insufficient size
150	Basic-Jukic 2021	No relevant data
152	Ogbebor 2021	Insufficient size
155	Petersen 2021	Insufficient size
159	Riad 2021	Population not relevant
160	Rimar 2021	Insufficient size
162	Rincon-Arevalo 2021	Duplicate of 161
168	Rusk 2021	Insufficient size
170	Sattler 2021	Duplicate of 169
176	Simon 2021	Duplicate of 175
177	Simon 2021	Insufficient size
179	Sindhi 2021	Insufficient size
181	Steber 2021	Insufficient size
183	Terpos 2021	Duplicate of 330
185	Terracina 2021	Insufficient size
187	Touizer 2021	Insufficient size
189	Vyhmeister 2021	Insufficient size
190	Wadei 2021	Insufficient size
192	Watad 2021	Insufficient size
193	Weinstock-Guttman 2021	Insufficient size
197	Yi 2021	Population not relevant
202	Tenforde 2021	Duplicate of 230
206	Hansen 2021	Population not relevant
208	Tsapepas 2021	Insufficient size
210	lannone 2021	Insufficient size
212	Papasavvas 2021	Insufficient size
213	Mostafa 2021	Insufficient size
214	Greenhall 2021	Insufficient size
220	Re 2021	Duplicate of 218
222	Massa 2021	Duplicate of 217
223	Frantzen 2021	Duplicate of 219
224	Re 2021	Duplicate of 220
231	Tano 2021	Insufficient size
232	Romano 2021	Insufficient size



234	Abe 2021	Insufficient size
235	Marinelli 2021	Insufficient size
241	Cook 2021	No relevant data
249	Mehta 2021	Insufficient size
250	Lin 2021	Duplicate of 7
254	Chang 2021	Insufficient size
255	Atanackovic 2021	Insufficient size
258	Parry 2021	Duplicate of 153
260	Cserep 2021	Insufficient size
262	Hill 2021	Insufficient size
265	Anjan 2021	No relevant data
266	Malinis 2021	Duplicate of 216
270	Drulovic 2021	Ineligible vaccine
273	Huzly 2021	No relevant data
277	Squire 2021	Insufficient size
281	Benotmane 2021	Duplicate of 221
285	Manni 2021	Insufficient size
292	Kastritis 2021	Population not relevant
294	Golding 2021	Insufficient size
304	Xu 2021	No relevant data
307	Brosh-Nissimov 2021	No relevant data
311	Lotan 2021	No relevant data
312	Loconsole 2021	Insufficient size
317	Damiani 2021	Insufficient size
318	Allen-Philbey 2021	Population not relevant
319	Kuter 2021	Population not relevant
321	Callejas Rubio 2021	Non-English
322	Rosman 2021	Population not relevant
323	von Csefalvay 2021	Population not relevant
326	Ishay 2021	Population not relevant and insufficient size
329	Felten 2021	Population not relevant
331	Rzymski 2021	Insufficient size
333	Sotiriou 2021	Population not relevant
339	Rabinovitch 2021	Population not relevant
341	Boekel 2021	No relevant data
345	Ravanan 2001	Duplicate of 340
346	Speer 2001	Duplicate of 342

347	Dhakal 2021	Duplicate of 343
348	Veenstra 2021	Duplicate of 344
350	Ramirez 2021	Insufficient size
351	Salviani 2021	Insufficient size
353	Boekel 2021	Duplicate of 341
354	Connolly 2021	No relevant data
355	O'Nions 2020	Population not relevant
356	Lubetzky 2021	Population not relevant
357	Butt 2021	Population not relevant
359	Mado 2021	Insufficient size
360	Komaba 2021	Insufficient size
361	Wolf 2021	Insufficient size
362	Westhoff 2021	No relevant data
363	Ferguson 2021	Insufficient size
365	Chung 2021	Population not relevant
366	Benucci 2021	Duplicate of 332
367	Chow 2021	Systematic review
368	Malinis 2021	Duplicate of 266

Note: Some studies have more than one excluded reason and we chose the first applicable one in our assessment form. Duplicate data could be preliminary / interim data, early or duplicate publications. Insufficient size includes case reports.

Table 2. Eligible studies

Reference	Author	Outcome assessed	
3	Attias 2021	Immunogenicity	
4	Billany 2021	Immunogenicity	
7	Kennedy 2021	Immunogenicity	
9	Lacson 2021	Immunogenicity	
10	Mahid 2021	Immunogenicity	
13	Ou 2021	Safety	
15	Wong 2021	Immunogenicity	
18	Scurr 2021	Immunogenicity	
19	Nadesalingam 2021	Immunogenicity	
20	Miele 2021	Immunogenicity	
22	Cucchiari 2021	Immunogenicity	
23	Ruddy 2021	Immunogenicity	
24	Chan 2021	Immunogenicity	

27	Husain 2021	Immunogenicity
28	Thakkar 2021	Immunogenicity
29	Schmidt 2021	Immunogenicity
31	al-Janabi 2021	Immunogenicity
32	Anand 2021	Immunogenicity
38	Ben-Dov 2021	Immunogenicity
40	Broseta 2021	Immunogenicity
41	Palich 2021	Immunogenicity
45	Achiron 2021	Immunogenicity
46	Addeo 2021	Immunogenicity
47	Agha 2021	Immunogenicity
49	Agur 2021	Immunogenicity
51	Apostolidis 2021	Immunogenicity
53	Barda 2021	Final Immunogenicity
54	Barriere 2021	Immunogenicity
56	Benotmane 2021	Immunogenicity
57	Benotmane 2021	Immunogenicity
58	Bertrand 2021	Immunogenicity
59	Bigaut 2021	Immunogenicity
60	Bird 2021	Immunogenicity
63	Botwin 2021	Safety
71	Braun-Moscovici 2021	Immunogenicity
75	Chavarot 2021	Immunogenicity
78	Chodick 2021	Efficacy and safety
79	Cohen 2021	Immunogenicity
84	Danthu 2021	Immunogenicity
85	Depaak 2021	Immunogenicity
87	Diefenback 2021	Immunogenicity
90	Duarte 2021	Immunogenicity
91	Ducloux 2021	Immunogenicity
94	Salinas 2021	Immunogenicity
95	Firket 2021	Immunogenicity
97	Frantzen 2021	Immunogenicity
99	Frater 2021	Immunogenicity
100	Furer 2021	Immunogenicity
104	Giesen 2021	Immunogenicity
105	Ghione 2021	Immunogenicity

106	Giopil 2021	Immunogenicity		
107	Grupper 2021	Immunogenicity		
108	Grupper 2021	Immunogenicity		
109	Guerrieri 2021	Immunogenicity		
110	Haberman 2021	Immunogenicity		
112	Hadi 2021	Efficacy		
113	Hagin 2021	Immunogenicity		
114	Haider 2021	Immunogenicity		
116	Harrington 2021	Immunogenicity		
118	Harrington 2021	Immunogenicity		
119	Havlin 2021	Immunogenicity		
120	Herishanu 2021	Immunogenicity		
121	Ben Zadok 2021	Immunogenicity		
122	Jahn 2021	Immunogenicity		
130	Korth 2021	Immunogenicity		
131	Lesny 2021	Immunogenicity		
132	Levy 2021	Immunogenicity		
135	Longlune 2021	Immunogenicity		
138	Marinaki 2021	Immunogenicity		
139	Marion 2021	Immunogenicity		
140	Massarweh 2021	Immunogenicity		
141	Mazzola 2021	Immunogenicity and safety		
143	Monin 2021	Immunogenicity and safety		
145 146	Monzo 2021 (Broseta 2021) Nadesalingam 2021	Immunogenicity Immunogenicity		
140	Narasimhan 2021	Immunogenicity		
151	van Oekelen 2021	Immunogenicity		
153	Parry 2021	Immunogenicity		
155	Peled 2021	Immunogenicity		
154	Pimpinelli 2021	Immunogenicity		
150	Rabinowich 2021	Immunogenicity		
158	Ram 2021	Immunogenicity and safety		
161	Rincon-Arevalo 2021	Immunogenicity and safety		
163	Rodriguez-Espinosa 2021	Immunogenicity		
164	Roeker 2021	Immunogenicity		
165	Rozen-Zvi 2021	Immunogenicity		
166	Rubbert-Roth 2021	Immunogenicity		
167	Ruddy 2021	Immunogenicity		
107	11000y 2021	minunogenicity		

169	Sattler 2021	Immunogenicity		
171	Schrezenmeier 2021	Immunogenicity		
172	Shostak 2021	Immunogenicity		
173	Shroff 2021	Immunogenicity		
174	Shrotri 2021	Immunogenicity		
175	Simon 2021	Immunogenicity		
178	Simon 2021	Immunogenicity		
180	Spiera 2021	Immunogenicity		
182	Stengert 2021	Immunogenicity		
184	Terpos 2021	Immunogenicity		
186	Torreggiani 2021	Immunogenicity		
188	Tzarfati 2021	Immunogenicity		
191	Waissengrin 2021	Safety		
194	Werbel 2021	Immunogenicity and safety		
195	Yanay 2021	Immunogenicity		
196	Yau 2021	Immunogenicity		
198	Yi 2021	Immunogenicity		
199	Young-Xu 2021	Efficacy and safety		
200	Chevallier 2021	Immunogenicity, efficacy and safety		
201	Espi 2021	Immunogenicity		
203	Moyon 2021	Immunogenicity		
204	Mahil 2021	Immunogenicity, efficacy and safety		
205	Holden 2021	Immunogenicity		
207	Goshen-Lago 2021	Immunogenicity and safety		
209	Khan 2021	Efficacy		
211	lacono 2021	Immunogenicity		
215	Ben-Tov 2021	Efficacy and safety		
216	Malinis 2021	Efficacy		
217	Massa 2021	Immunogenicity		
218	Re 2021	Immunogenicity		
219	Frantzen 2021	Immunogenicity		
221	Benotmane 2021	Immunogenicity		
225	Labriola 2021	Immunogenicity		
226	Hadjadj 2021	Immunogenicity		
227	Chemaitelly 2021	Immunogenicity		
228	Cao 2021	Immunogenicity		
229	Boekel 2021	Immunogenicity		

230	Tenforde 2021	Efficacy		
233	Prendecki 2021	Immunogenicity		
236	Liao 2021	Immunogenicity		
237	Lacson 2021	Immunogenicity		
238	Izmirly 2021	Immunogenicity		
239	Hall 2021	Immunogenicity		
240	Ghandili 2021	Immunogenicity		
242	Benda 2021	Immunogenicity		
243	Garcia 2021	Immunogenicity		
244	Connolly 2021	Safety		
245	Abo-Helo 2021	Immunogenicity		
246	Zitt 2021	Immunogenicity		
247	Rashidi-Alavijeh 2021	Immunogenicity		
248	Midtvedt 2021	Immunogenicity		
251	Heudel 2021	Efficacy		
252	Guglielmelli 2021	Immunogenicity		
253	Di Meo 2021	Immunogenicity		
256	Stampfer 2021	Immunogenicity		
257	Pimpinelli 2021	Immunogenicity		
259	Del Bello 2021	Immunogenicity		
261	Aslam 2021	Efficacy		
263	Gurion 2021	Immunogenicity		
264	Benjamini 2021	Immunogenicity		
267	Re 2021	Immunogenicity		
268	Qin 2021	Efficacy		
269	Hod 2021	Immunogenicity		
271	Stumpf 2021	Immunogenicity		
272	Ramanathan 2021	Immunogenicity		
274	Charmetant 2021	Efficacy		
275	Caocci 2021	Immunogenicity		
276	Woldemeskel 2021	Immunogenicity		
278	Madelon 2021	Immunogenicity		
279	Herrera 2021	Immunogenicity		
280	Easdale 2021	Immunogenicity		
282	Weigert 2021	Immunogenicity		
283	Stefanski 2021	Immunogenicity		
284	Sormani 2021	Immunogenicity		

286	Kaiser 2021	Immunogenicity		
287	Mrak 2021	Immunogenicity		
288	Gavriatopoulou 2021	Immunogenicity		
289	Espi 2021	Immunogenicity		
290	Boyarsky 2021	Immunogenicity		
291	Schrezenmeier 2021	Immunogenicity		
293	Rotondo 2021	Safety		
295	Fox 2021	Immunogenicity		
296	Ali 2021	Safety		
297	Ammitzbøll 2021	Immunogenicity		
298	Ruddy 2021	Immunogenicity		
299	Redjoul 2021	Immunogenicity		
300	Prendecki 2021	Immunogenicity		
301	Lemieux 2021	Immunogenicity		
302	Clarke 2021	Immunogenicity		
303	Benotmane 2021	Immunogenicity		
305	Schramm 2021	Immunogenicity		
306	Revon-Riviere 2021	Immunogenicity		
308	Ehmsen 2021	Immunogenicity		
309	Greenberger 2021	Immunogenicity		
310	Hall 2021	Immunogenicity		
313	Scoccianti 2021	Safety		
314	Buttiron Webber 2021	Immunogenicity		
315	Firinu 2021	Immunogenicity		
316	Whitaker 2021	Efficacy		
320	Shenoy 2021	Immunogenicity		
324	Fong 2021	Immunogenicity		
325	Blazquez-Navarro 2021	Immunogenicity		
327	Lotan 2021	Safety		
329	So 2021	Safety		
330	Terpos 2021	Immunogenicity		
332	Benucci 2021	Immunogenicity		
334	Polewska 2021	Safety		
335	Talamonti 2021	Safety		
336	Tylicki 2021	Immunogenicity		
337	Tallantyre 2021	Immunogenicity		
338	Henriquez 2021	Immunogenicity and efficacy		

probantes de la SRAP +

340	Ravanan 2021	Efficacy		
342	Speer 2021	Immunogenicity		
343	Dhakal 2021	Immunogenicity		
344	Veenstra 2021	Immunogenicity		
349	Song 2001	Efficacy		
352	Bardazzi 2021	Safety		
358	Butt 2021	Efficacy		
364	Connolly 2021	Immunogenicity		
369	Skroza 2021	Safety		
370	Stumpf 2021	Immunogenicity		

Efficacy of COVID-19 vaccination in preventing SARS-CoV2 infection in the immunocompromised

There were three cohort studies (53, 78, 316) evaluating 7,283,329 participants that developed 20,087 SARS-CoV2 infections during follow up. In addition, there were two case-control studies (199, 230) evaluating 498,203 negative and 15,997 positive SARS-CoV2 tests. The summary and results of these studies is given in Tables 3 and 4.

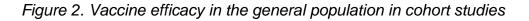
Table 3. General summary of observational studies evaluating SARS-CoV2 vaccination in the general population

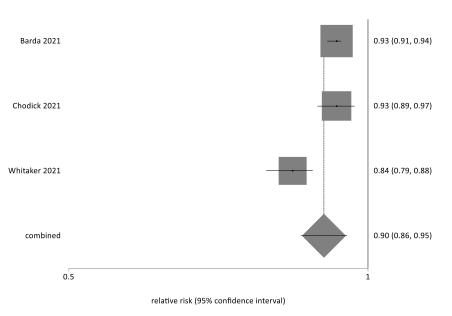
Author	Country and Population	Vaccine	Overall number vaccinated	Number immuno- compromised vaccinated	Overall number un- vaccinated	Number immuno- compromised unvaccinated	Matching /Adjustment
Cohort st	udies						
Barda et al. (53)	Israel, data from Clalit Health Services, largest of 4 integrated health organizations representing 4.7 million (53% population)	BNT162b2	596,618	16,615	596,618	16,318	Matched for age, sex, sector (General Jewish, Arab, Ultra- Orthodox Jewish), number of CDC risk factors, number of influenza vaccinations over previous 5 years

Chodick et al. (78)	Israel, data from Maccabi Health Services representing 2.6 million (25% population)	BNT162b2	872,454	25,459 (immunosuppre ssion) 95,935 (cancer)	1,178,597*	27,822* (immunosuppre ssion) 90,512* (cancer)	Adjusted for age, sex, sector (General Jewish, Arab, Ultra- Orthodox Jewish), chronic illness, calendar period
Whitake r et al. (316)	UK, data extracted from computerized medical record, Oxford-Royal College of General Practitioners Research and Surveillance Centre involving 718 general practices covering 7.2 million	BNT162b2 or ChAdOx1	2,221,473	84,234	1,817,569	7,325	Adjusted for region, age, sex, ethnicity, household size, income, GP consultation quartile, respiratory disease risk status and smoking
Case-con Author	trol studies Country and population	vaccine	Overall negative	Immunocompr omised	Overall positive	Immunocompr omised	Matching/A djustment
Young- Xu et al. (199)	US, data from Veterans Health Administratio n Corporate Data Warehouse– 171 medical centres, caring for 6.2 million veterans	BNT162b2 or mRNA- 1273	tests 497,584	negative tests 96,783 – IMM 40,710 - cancer	tests 15,404	positive tests 2,324 – IMM 992 - cancer	Age, sex, race, rurality, BMI, congestive heart failure, chronic kidney disease, diabetes mellitus, hypertension , VA priority level
Tenford e et al. (230)	US, surveillance activity across IVY network of 18 academic medical	BNT162b2 or mRNA- 1273	619	155	593	99	Age, sex, region, race, calendar time, number of chronic medical conditions, >

SPOR Evidence Alliance Strategy for Patient-Oriented Research Alliance pour des données probantes de la SRAP +		BPC		- (COVID-19 Evidence	Network
probantes de la S Stratégie de recherche axée sur le patient	SRAP +	Putting Patients First		to support Decision-makin in Canad		
 centres in 16 states						one hospitalization n in a year, smoking, education level, mask wearing, indoor

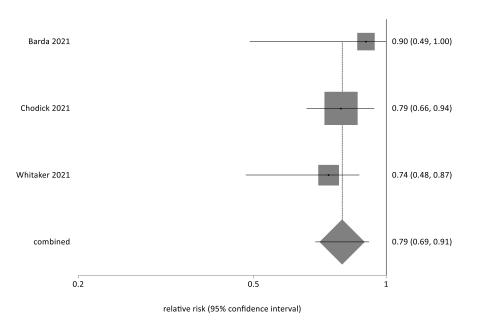
*Infections from the first 7 days of the 1st vaccination (assumed to be similar risk as unvaccinated)


Table 4. Summary of results of general population observational studies


Author	Overall no. COVID-19 cases	Duration of follow up	Time after second vaccine considered protected	Overall vaccine protection (95% confidence interval)	Vaccine protection in immunocompromised (95% confidence interval)
Cohort st	tudies				
Barda et al. (53)	10561 infections 5996 symptoms 369 hospitalized 41 deaths	Mean 15 days (IQR = 5 to 25)	7 days	93% (91 to 94) - infection 96% (94 to 97) – symptom 92% (85 to 97) - hospital	90% (49 to 100) - infection 84% (19 to 100) – symptom 100% (2 vs 0) - hospital
Chodick et al. (78)	5242 infections 3444 symptoms	7-27 days	7 days	93% (89-97)* - infection	79% (66-94)* – IMM 88% (80-97)* - cancer 85% (77-93) - combined
Whitaker et al. (316)	4284 infections	unclear	14 days	84% (79-88) - infection	74% (48-87)
Case-con	trol studies	•	-	- !	
Author	Proportion vaccinated in positive cases	Proportion vaccinated in negative cases	Time after second vaccine considered protected	Overall vaccine protection (95% confidence interval)	Vaccine protection in immunocompromised (95% confidence interval)
Young- Xu et al. (199)	4%	17%	7 days	94% (92-95) - infection	88% (82-92) – IMM 84% (73-91) - cancer
Tenford e et al. (230)	9%	44%	14 days	91% (86-95%) - hospital	63% (21-83)

*Calculated by pooling protection from the two calendar periods outlined in supplementary table 2.

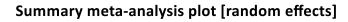
The three ((53, 78, 316) cohort studies reported a pooled vaccine efficacy in the general population of 90% (95% CI = 86 to 95%) with significant heterogeneity between studies (I² = 84%, χ^2 = 12.7, p = 0.002) driven by the UK study giving a lower efficacy than the two Israeli studies (Figure 2). These population studies contained 177,773 participants that were immunocompromised although none of the studies stated how this was defined. The vaccine efficacy in the immunocompromised population was 79% (95% CI = 69 to 91%) with no statistically significant heterogeneity between studies (I² = 0%, χ^2 = 0.69, p = 0.71) (Figure 3). One cohort study (78) described the vaccine efficacy in 186,447 cancer patients and reported 88% (95% CI = 80-97%) protection in those vaccinated.

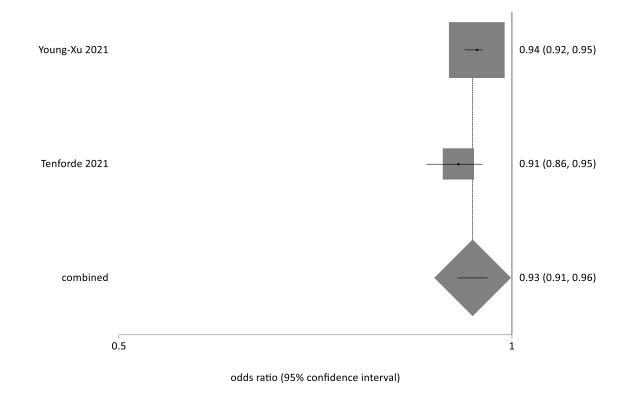


Summary meta-analysis plot [random effects]

x-axis refers to the summary statistic used to calculate vaccine effectiveness

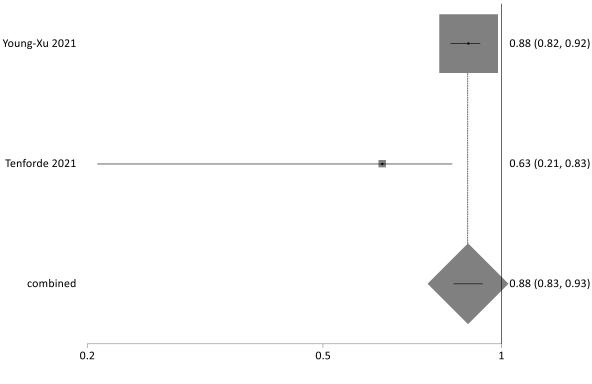
Figure 3. Vaccine efficacy in the immunocompromised population in cohort studies


Summary meta-analysis plot [random effects]


x-axis refers to the summary statistic used to calculate vaccine effectiveness

The two (199, 230) case control studies reported a pooled vaccine efficacy in the general population of 93% (95% CI = 91 to 96%) with mild heterogeneity between studies (I² = 32%, χ^2 = 1.48, p = 0.22) (Figure 4). Case-control studies are more prone to bias and confounding than cohort studies and calculating the vaccine efficacy assumes that the odds ratio approximates to the relative risk which is not the case if the disease is common. It is therefore reassuring that these two US case-controls studies gave similar results to the cohort studies above. These population studies contained 99,355 participants that were immunocompromised although none of the studies stated how this was defined. The vaccine efficacy in the immunocompromised population was 88% (95% CI = 83 to 93%) with no statistically significant heterogeneity between studies (I² = 0%, χ^2 = 0.90, p = 0.34) (Figure 5). One case control study (199) described the vaccine efficacy in 41,632 cancer patients and reported 84% (95% CI = 73-91%) protection in those vaccinated.

Figure 4. Vaccine efficacy in the general population in case-control studies



x-axis refers to the summary statistic used to calculate vaccine effectiveness

Figure 5. Vaccine efficacy in the immunocompromised population in case-control studies

Summary meta-analysis plot [random effects]

odds ratio (95% confidence interval)

x-axis refers to the summary statistic used to calculate vaccine effectiveness

There are also four studies (227, 251, 261, 340) that reported vaccine efficacy in specific immunocompromised populations comparing those that are vaccinated with those that are unvaccinated. Heudel et al. (251) reported COVID-19 symptoms and a positive SARS-CoV2 test developing in 1503 cancer patients undergoing active treatment over a median of 44 days (range 1-130 days) during a vaccination program. 1203 (80%) had solid tumors and the remaining hematological malignancy and 75% received BNT162b2 with 21% mRNA-1273 and 4% ChAdOx1. 4/1091 (0.4%) of the fully vaccinated developed symptomatic COVID-19 compared to 20/412 (5%) that had a single dose. The vaccine efficacy was not reported in this paper but can be calculated as 92% (95% CI = 78 to 97%). This is a similar vaccine efficacy to the general population and also compatible with an efficacy slightly lower than the general population described in the two population studies above (78, 199).

Another study (261) reported on vaccine efficacy in 2151 solid organ transplant patients 912 fully vaccinated, 88 partially vaccinated and 1151 unvaccinated controls. 70% received the

SPOR Evidence Alliance Strategy for Pattent-Oriented Research Alliance pour des données probantes de la SRAP +

mRNA-1273 vaccine. There were 65 cases of COVID-19 during a mean of 144 days of follow up in the vaccinated versus 691 days in the unvaccinated group. Adjusting for different durations of follow up gives a vaccination efficacy of 81% (95% CI = 50 to 95%). In contrast, a cohort study of 782 kidney transplant patients in Qatar (227) found that the vaccine effectiveness only 47% (95% CI 0-74%) 14 days after the 2nd vaccination (either BNT162b2 or mRNA-1273) when compared with the unvaccinated. This increased to 74% (95% CI = 33-90%) 56 days after the second vaccine. A final study (340) evaluated SARS-CoV-2 infections in vaccinated and unvaccinated solid organ transplant recipients linking the UK transplant registry, Public Health England, National Health Service Digital and National Immunisation Management Services records. 39,727 (82%) had been vaccinated, 6748 (14%) unvaccinated and the remainder had one vaccine. There were 3473/6748 that were SARS-CoV-2 positive in the unvaccinated group compared to 143/39727 positive cases in the fully vaccinated group. In those that were positive case fatality was 438/3473 (12.6%) in unvaccinated group compared to 11/143 (7.7%) in the fully vaccinated group.

There were also four studies (216, 268, 274, 349) that gave uncontrolled information on COVID-19 risk in fully vaccinated transplant patients. Only one of these studies (274) described the duration of follow up and none had a meaningful comparator group, so results are difficult to interpret. The proportion developing breakthrough COVID-19 varied between 0.65% (216) and 2% (274) with a pooled proportion of 1% (95% CI = 0.6 to 2%) in 19790 solid organ transplant patients.

Hadi et al. (112) described efficacy of vaccination in 864,575 participants with 5,562 having inflammatory bowel diseases (IBD). Risk of developing COVID-19 was similar in the IBD group compared to the general population (0.36% versus 0.28%), relative risk = 0.95 (95% CI = 0.51 to 1.78) after adjusting for confounding factors. Adverse events were also similar in both groups. Over 50% of patients with IBD were taking immunosuppressive therapy and although there were not data given on this group, the authors did state that immunosuppressive therapy was not associated with an increased risk of developing COVID-19. A similar outcome was reported by Ben-Tov et al. (215) although this used the same database as Chodick et al. (78) and so some of the participants are likely to be common to both studies. Nevertheless, Ben-Tov et al. (215) reported no increase in COVID-19 infections in 12,231 fully vaccinated IBD patients compared with 36,254 matched vaccinated participants without IBD. COVID-19 infection risk was similar in both groups (0.19% in IBD and 0.15% in controls) RR = 1.21 (95% CI = 0.74 to 1.97). No increase in risk was seen in those taking immunosuppressive therapy.

Immunogenicity of COVID-19 vaccination in the immunocompromised and dialysis patients

Studies addressing the immune response in the immunocompromised were subdivided into persons living with the human immunodeficiency virus (HIV), malignancy, immunosuppressive therapy, transplant patients and those with primary immune deficiencies. Studies evaluated anti-Spike protein antibodies, neutralizing antibodies and T cell responses. Almost all studies evaluated anti-Spike protein antibodies, and we use these antibodies when reporting seroconversion (manufacturer's definitions used as cut-off values).

Immunogenicity in persons living with Human Immunodeficiency Virus

Overall, there were seven studies (10, 99, 114, 132, 174, 276, 298) that evaluated COVID-19 vaccination in persons living with HIV (PLWH) summarized in Table 5.

Author	Design	Country	Case description	Control description	Vaccine	Titre measured	Duration between 1 st and 2 nd vaccine
Madhi (10)	cohort	Sth Africa	HIV +ve that were COVID naïve. Age = 43 Female = 46%	HIV -ve controls that were COVID naïve Age = 31 Female = 84%	ChAdOx1	anti-RBD IgG	28 days
Frater (99)	cohort	UK	HIV +ve on ART Age = 42.5 Female = 0%	group 5d of COV002 study (RCT of AZ vaccine in healthy volunteers) Age = 38.5 Female = 48%	ChAdOx1	anti-S IgG	28 days
Haidar (114)	cohort	US	HIV +ve (all CD4>200) treated over last 12 months across the University of Pittsburgh Health System Age = 57.1 Female = 8%	Female = 48%V +ve (all 04>200)health care workers employed across the same health care systemated over tt 12care systemonthsAge = 43.7ross the iversity of tsburgh ealth stem e = 57.1 male =		anti-RBD IgG Beckman Coulter platform	unclear

Table 5. Summary of persons living with HIV studies

Strategy for Patient-Oriented Research

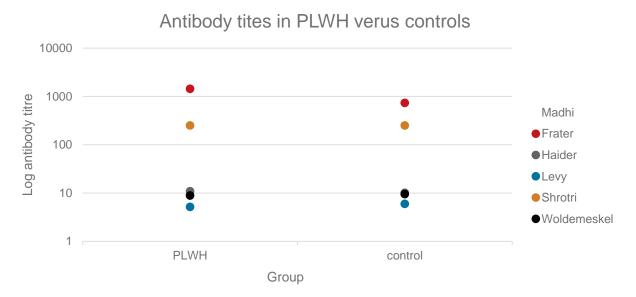
Levy (132)	cohort	Israel	HIV +ve all on antiviral, 18.2% had AIDS, 7 malignancies and two organ transplants. Mean time since diagnosis 13.2 years Age = 49.8 Female = 8%	health care workers not on immunosuppression Age = N/R Female = N/R	BNT162b2	anti-RBD IgG	21 days
Shrotri (174)	Cohort	UK	HIV +ve Age = N/R Female = N/R	general data for patients not on IMM Age = N/R Female = N/R	BNT162b2 or ChAdOx1	anti-RBD IgG (Roche Elecsys)	4-12 weeks
Woldemeskel (276)	Cohort	US	HIV +ve, 11 black no prior COVID, 3 had low level viremia despite ART Age = 52 Female = 58%	healthy donors no prior COVID Age = 41 Female = 41%	BNT162b2	anti-S IgG (Euroimmun)	unclear
Ruddy (298)	Case series	US	persons with HIV (PWH) Age = 62 Female = 7%	N/A	5 BNT162b2, 9 mRNA- 1273	anti -RBD (IgM, IgG) , a critical target of neutralizing antibodies within the spike protein	4 weeks

Three cohort studies (10, 132, 174) compared the immunogenicity of COVID-19 vaccination in PLWH and controls 15-28 days after the first vaccination in 8,232 participants. There was no statistically significant difference between PLWH and controls in the proportion seroconverting (RR = 1.02; 95% CI = 0.88 to 1.18) with mild heterogeneity between studies (I² = 31%, χ^2 = 2.89, p = 0.24) (Figure 6).

Figure 6. Seroconversion in people living with HIV and controls after first vaccination

	HIV +	ve	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Levy 2021	66	128	66	128	27.3%	1.00 [0.79, 1.27]	
Madhi 2021	31	37	18	27	18.8%	1.26 [0.93, 1.70]	
Shrotri 2021	14	15	7681	7897	53.8%	0.96 [0.84, 1.10]	
Total (95% CI)		180		8052	100.0%	1.02 [0.88, 1.18]	-
Total events	111		7765				
Heterogeneity: Tau ² = 0.01; Chi ² = 2.89, df = 2 (P = 0.24); I ² = 31%						%	
Test for overall effect:	Z=0.28	(P = 0.7	78)				0.5 0.7 1 1.5 2 Favours control Favours PLWH

Six cohort studies (10, 99, 114, 132, 174, 276) compared the immunogenicity of COVID-19 vaccination in PLWH and controls 14-75 days after the second vaccination in 1,241 participants. There was no statistically significant difference between PLWH and controls in the proportion seroconverting (RR = 1.00; 95% CI = 0.98 to 1.02) with 98% seroconverting in PLWH and 99% in the control arm with no heterogeneity between studies (I² = 0%, χ^2 = 1.44, p = 0.92) (Figure 7).


Figure 7. Seroconversion in people living with HIV and controls after second vaccination

	HIV +ve		Control		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Shrotri 2021	3	3	494	497	0.3%	0.88 [0.61, 1.28]	
Haidar 2021	35	37	105	107	5.5%	0.96 [0.89, 1.05]	
Levy 2021	139	141	269	272	66.3%	1.00 [0.97, 1.02]	
Woldemeskel 2021	12	12	17	17	2.0%	1.00 [0.87, 1.14]	
Frater 2021	51	51	49	49	24.4%	1.00 [0.96, 1.04]	+
Madhi 2021	30	32	21	23	1.5%	1.03 [0.88, 1.20]	
Total (95% CI)		276		965	100.0%	1.00 [0.98, 1.02]	•
Total events	270		955				
Heterogeneity: Tau ² = 0.00; Chi ² = 1.44, df = 5 (P = 0.92); I ² = 0%						6 –	
Test for overall effect: Z = 0.42 (P = 0.68)							Favours PLWH Favours control

Most of the six cohort studies described median and interquartile ranges for antibody titres, which cannot be accurately synthesized. However, the median/mean antibody titres were similar in both groups (Figure 8).

Figure 8. Median/mean antibody titres for PLWH and controls

There was also one case series (298) reporting on 14 PLWH with no control group. Seroconversion was reported in 10/10 cases 14-27 days after the first vaccine and 14/14 28 days after the second vaccine. Participants had either BNT162b2 or mRNA-1273 and results were not presented separately for each type of vaccine.

Immunogenicity in patients taking immunosuppressive therapy

Drugs that suppress the immune system are used for a variety of autoimmune diseases and might also be expected to impact of the immunogenicity of COVID-19 vaccines. There were 40 studies (3, 7, 15, 23, 31, 37, 45, 51, 71, 85, 104, 106, 109, 110, 114, 145, 166, 174, 180, 204, 226, 229, 233, 236-238, 271, 272, 278, 282-284, 287, 297, 315, 320, 332, 337, 344, 364) included in this rapid review that addressed this question and these are summarized in Table 6. The control groups used in these studies were either those with the disease but not treated with immunosuppressive therapy or healthy volunteers. These were analyzed separately but gave similar results, so these control groups are combined in the data synthesis.

Table 6. Summary of patients taking immunosuppressive therapy studies

Author	Design	Country	Case description	Control description	Vaccine	Titre measured	Duration between 1 st and 2 nd vaccine
Billany (3)	Case series	UK	maintenance hemodialysis, 10% IMM 20% previous COVID Age = 62.1 Female = 40%	maintenance hemodialysis patients not on IMM	BNT162b 2 (82%) or ChAdOx1 (18%)	anti-RBD IgG (Siemens ADVIA Centaur Xp/XPT assay)	N/A
Kennedy (7)	Cohort	UK	IBD patients receiving infliximab (8.7% prior covid) Age = 41.1 Female = 50%	IBD patients receiving vedoluzimab (9.2% prior covid) Age = 49.6 Female = 47%	BNT162b 2 (46%) or ChAdOx1 (54%)	anti-S IgG (Roche, Elecsys)	N/R
Wong (15)	Cohort	US	IBD cases on anti-TNF, ustekinumab, vedoluzimab or no therapy - selected the anti-TNF and ustekinumab patients Age = 49 Female = 52%	health care workers (14) and healthy volunteers (29) Age = 34 Female = 43%	BNT162b 2 (48%) or mRNA- 1273 (52%)	anti-RBD total and IgG (Siemens Healthineer s)	unclear
Ruddy (23)	Case series	US	rheumatological disorders all taking IMM Age = 44 Female = 95%	N/A	BNT162b 2 (51%) or mRNA- 1273 (49%)	anti-RBD total Ig (Roche, Elecsys)	27 days (21- 28 IQR)
Al-Janabi (31)	Case series	UK	patients with RA, psoriasis, IBD on a biologic/immunomodulat or Age = 53	N/A	BNT162b 2 (50%) or ChAdOx1 (50%)	anti-RBD total Ig (Roche, Elecsys) (and anti-S1	N/R

			Female = 41%			lgG (Siemens))	
Dailey (37)	Case series	US	Case series of pediatric IBD patients but created cohort study out of those on vedolizumab versus other biologic (demographic data not available on this subset) Age = N/R Female = N/R	N/A	BNT162b 2 or mRNA- 1273 (n=28), d26.COV2 .S (n=5)	anti-RBD IgG (Acro Biosystems)	unclear
Achiron (45)	Cohort	Israel	MS for median 13 years treated with IMM (cladribine, fingolimod or ocrelizimab) Age = 48 Female = 53%	healthy volunteers and MS w/o IMM Age = 54.3 (healthy); 50.5 (MS w/o IMM Female = 94% (healthy); 49% (MS w/o IMM	BNT162b 2	anti-S IgG (Quantivac, Euroimmun)	21 days
Apostolidi s (51)	Cohort	US	MS patients on anti- CD20 therapy Age = 40.4 Female = 75%	healthy controls w/in University of Pennsylvania system Age = 35.2 Female = 60%	BNT162b 2 (62%) or mRNA- 1273 (38%)	anti-S IgG (and anti- RBD IgG)	unclear
Braun- Moscovici (71)	Cohort	Israel	Case series of consecutive autoimmune patients receiving first vaccine (mean disease duration 11 years) – patients on IMM Age = 57.6 Female = 75%	Case series of consecutive autoimmune patients receiving first vaccine but not on IMM Age = N/R Female = N/R	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	21 days
Deepak (85)	Cohort	US	Patients with chronic inflammatory disease (100 on MMX, 33 on none, ASA, vedoluzimab) Age = 45.5 Female = 74%	Faculty & staff of Washington University, BJC (St Louis) &UCSF Age = 43.4 Female = 55%	BNT162b 2 or mRNA- 1273	anti-S IgG	28 days
Giesen (104)	Cohort	German y	patients w/ chronic inflammatory disease on immunosuppression (one on sulphasalazine only which is not immunosuppressive but rest on IMM) Age = 50.5 Female = 65%	health care workers, non- infected with COVD-19 Age = 37.5 Female = 69%	BNT162b 2 or mRNA- 1273 (n=5)	anti-S IgG (Quantivac, Euroimmun)	35 days

Strategy for Patient-Oriented Research

Guerrieri (109)	Case series	Italy	Patients with MS either on fingolimod or ocrelizumab (16 of each) Age = 42.9 Female = 69%	N/A	BNT162b 2 (30) or mRNA- 1273 (2)	anti-S Ig	21 days
Haberma n (110)	Cohort	US	Patients with immune mediated inflammatory disease (predominantly psoriatic & RA) on IMM Age = 56 Female = 61%	healthy controls Age = 49 Female = 68%	BNT162b 2	anti-S1 IgG (Quantivac, Euroimmun)	unclear
Haidar (114)	Cohort	US	various autoimmune disease (50% IBD, 50% rheumatological) treated over last 12 months across the University of Pittsburgh Health System Age = 54.2 Female = 70%	health care workers employed across the same health care system Age = 43.7 Female = 72%	BNT162b 2 (41%), mRNA- 1273 (59%) or d26.COV2 .S	anti-RBD IgG Beckman Coulter platform	unclear
Broseta (145)	Cohort	Spain	hemodialysis, mean of 67.9 months (5% on IMM) all seronegative at baseline Age = 70.9 Female = 33%	Hemodialysis patients not on IMM	BNT162b 2 (43%) or mRNA- 1273 (57%)	anti-S1 IgG (Siemens)	21-28 days
Goupil (106)	Cohort	Canada	Hemodialysis patients COVID naïve on IMM Age = 70 Female = 34% (Also COVID +ve group)	Hemodialysis patients COVID naïve not on IMM	BNT162b 2	anti-RBD IgG	N/R
Mahil (204)	Cohort	UK	consecutive patients with psoriasis receiving methotrexate or targeted biological monotherapy Age = 44 Female = 44%	healthy controls (Consecutive volunteers without psoriasis and not receiving IMM) Age = 34 Female = 47%	BNT162b 2	anti-S IgG	28 days
Spiera (180)	Case series	US	adult patients with rheumatic diseases from one rheumatology practice who received at least one dose of a COVID-19 vaccine (30 treated with rituximab, 35 taking more than one	N/A	BNT162b 2 (57%), mRNA- 1273 (43%)	anti-SARS- CoV2 IgG (Roche, Elecsys)	N/R

			antirheumatic medication) Age = 61.3 Female = 76%				
Shrotri (174)	Cohort	UK	large prospective community cohort, Virus Watch reported data for all vaccinated participants, also data for individual diseases & immunocompromised intervention patients Age = 65 Female = N/R	general data for patients not on IMM Age = N/R Female = N/R	ChAdOx1 n=5342 and BNT162b 2 n=3009, other 40, missing =36	anti-RBD IgG (Roche Elecsys)	between 4-12 weeks
Rubbert- Roth (166)	Cohort	Switzerl and	consecutive patients with RA on disease- modifying anti-rheumatic drug treatment (were enrolled in RECOVER observational trial) Age = 64.6 Female = 55%	Healthy controls Age = 44.8 Female = 70%	mRNA- 1273 (9 vs 0), BNT162b 2 (44 vs 20)	anti-S1 Ig (Roche Elecsys)	3-4 weeks
Hadjadj (226)	Cohort	France	Patients with systemic inflammatory diseases on IMM, COVID naïve observational trial) Age = 52 Female = 75%	immunocompetent health care workers from the same hospital, COVID naïve Age = 56 Female = N/R	BNT162b 2	anti-S IgG	4 weeks
Boekel (229)	Cohort	Holland	Patients with autoimmune disease (80% were on IMM) Age = 63 Female = 67%	patients asked to recruit a healthy control with same sex and comparable age Age = 63 Female = 67%	ChAdOx1 (54%), BNT162b 2 (38%) or mRNA- 1273 (8%)	anti-RBD IgG (in house)	12 weeks for ChAdOx1, 6 weeks for BNT162b2 and 4 weeks mRNA-1273
Prendecki (233)	cohort	UK	patients receiving IMM for autoimmune rheumatic or glomerular diseases COVID naïve (also reported prior COVID) Age = 52.3 Female = 46%	health care workers Age = 41.4 Female = 59% 46%	ChAdOx1 (29%) and BNT162b 2 (71%)	anti-S IgG (Abbott)	32 days for ChAdOx1 and 30 days BNT162b2

Liao (236)	Case series	US	patients in National Jewish Health, a pulmonary specialty outpatient clinic with chronic medical condition (subset on IMM) Age = 62 Female = 62%	N/A	BNT162b 2 (66%), mRNA- 1273 (34%)	anti-S IgG (Euroimmun)	unclear
Lacson (237)	Cohort study	US	Dialysis Clinic, Inc. (DCI) that assessed antibody response following administration of SARS-CoV-2 messenger RNA (mRNA) vaccines (30 clinics in 8 states) on IMM Age = 68 Female = 38%	Dialysis Clinic, Inc. (DCI) that assessed antibody response following administr ation of SARS- CoV-2 messenger RNA (mRNA) vaccines (30 clinics in 8 states) not on IMM	BNT162b 2 (90%) or mRNA- 1273 (10%)	anti-S1 IgG	Manufacturer recommendat ion
Izmirly (238)	Cohort study	US	Patients attending SLE clinics Age = 45.5 Female 88%	Healthy controls Age = 45.3 Female = 60%	BNT162b 2 (68%), mRNA- 1273 (27%), d26.COV2 .S (5%)	anti-RBD IgG	Manufacturer recommendat ion
Stumpf (271)	Cohort study	German y	hemodialysis (95%) and peritoneal dialysis (5%) for a mean of 5.7 years on IMM	hemodialysis (95%) and peritoneal dialysis (5%) for a mean of 5.7 years not on IMM	BNT162b 2 (18%) or mRNA- 1273 (82%)	anti-S1 IgG or IgA (Euroimmun)	28 days
Ramanat han (272)	Cohort study	US	autoimmune disease treated with antimetabolites or biologics Age = 67 Female = 53%	Health care workers Age = 42 Female = 62.5%	BNT162b 2 (41%) or mRNA- 1273 (59%)	anti-S1 IgG (Euroimmun)	N/R
Madelon (278)	Cohort study	US	MS or rheumatic disease treated with anti-CD20 (ocerlizumab or rituximab) (2 prior COVID) - some had other IMM in addition Age = 49 Female = 57%	immunocompetent healthy controls (3 prior COVID) Age = 54.5 Female = 68%	BNT162b 2 (22%) or mRNA- 1273 (78%)	anti-RBD total Ig (Roche, Elecsys)	28 days

Strategy for Patient-Oriented Research

Weigert (282)	Cohort study	Portugal	Chronic hemodialysis patients without COVID with median dialysis duration of 46 months on IMM	Chronic hemodialysis patients without COVID with median dialysis duration of 46 months not on IMM	BNT162b 2	anti-S IgG (Roche, Elecsys)	21 days
Stefanski (283)	Cohort study	German y	RA and autoimmune patients on rituximab (RTX) and RA patients on other IMM Age = 58 (RTX) 68 (RA) Female = 74%	Healthy controls Age = 57 Female = 50%	ChAdOx1, BNT162b 2 or mRNA- 1273	anti-S IgG	N/R
Sormani (284)	Case series	Italy	MS for a median of 9.4 years treated with disease modifying therapies 87 (11%) had no treatment - 7.8% had prior COVID Age = 45.8 Female = 66%	N/A	BNT162b 2 (76%) or mRNA- 1273 (23%)	anti-RBD total Ig (Roche, Elecsys)	N/R
Mrak (287)	Cohort study	Austria	Patients under rituximab treatment for RA, vasculitis, connective tissue diseases for a mean of 6.9 months. 57% had other disease modifying agents Age = 61.7 Female = 77%	sex and aged matched healthy controls	BNT162b 2 (82%) or mRNA- 1273 (18%)	anti-RBD total Ig (Roche, Elecsys)	N/R
Ammitzb øll (297)	Case series	Denmar k	systemic lupus erythematosus (SLE; n = 61) and rheumatoid arthritis (RA; n = 73) from the COPANARD cohort on IMM Age = 70 Female = 67%	N/A	BNT162b 2	SARS- CoV- 2 spike S1 protein	N/R
Firinu (315)	Cohort study	Italy	IMM for 1) AS, psoriasis, psoriatic arthritis (PsA); 2) RA 3) systemic lupus erythematosus; 4)miscellaneous systemic disorders 5) IBD 6) MS Age = 56 Female = 68%	Health care workers Age = 51 Female = 68%	BNT162b 2	anti-RBD IgG (Snibe Diagnostics)	21 days

Shenoy (320)	Cohort study	India	Patients with autoimmune rheumatoid disease. 57% on methotrexate, 10% on tofacitinib, 22% on other IMM, 27% on steroids (some in combination with other IMM) Age = 52 Female = 79.4%	Healthy controls Age = 43.6 Female = 7.3%	ChAdOx1 and BVV152 (this was excluded from analysis)	Anti-S IgG	N/R
Benucci (332)	Case series	Italy	RA patients treated with rituximab Age = 57.4	N/A	BNT162b 2	anti-RBD IgG (FEIA ThermoFish er, Sweden)	3 weeks
Tallantyre (337)	Cohort study	UK	MS patients on disease modifying therapies Age = 52.2 Female = 73% (Demographics available for whole cohort only)	MS patients not on disease modifying therapies	ChAdOx1 (47%) and BNT162b 2 (38.5%) Unknown (14.4%)	anti-RBD- IgG (Kantaro Biosciences ,USA)	10 weeks
Veenstra (344)	cohort	US	Various autoimmune disease patients on IMM Age: 55.9 Female: 87.5%	Vaccinated healthy controls Age: 38.1 Female: NR	BNT162b 2 or mRNA- 1273	anti-RBD IgG (Kantaro and BioTechne, USA)	4 weeks
Connolly (364)	Case series	US	Patients with anti- neutrophil cytoplasmic antibody (NACA) associated vasculitis (AVV) - 91.1% taking rituximab and all on IMM. Age: 69 Female: 35.4%	N/A	BNT162b 2 (40%) or mRNA- 1273 (52%) or d26.COV2 .S (8%)	anti-S IgG (Roche, Elecsys) or (Euroimmu n)	N/R

Immunogenicity of the first vaccination in patients taking immunosuppressive therapy

There were 12 cohort or case series studies (3, 7, 31, 51, 104, 106, 174, 166, 229, 233, 315, 337) evaluating 2139 patients taking immunosuppressive therapy that reported on the proportion seroconverting after their first vaccination. Overall, the seroconversion rate after the first vaccination was 47% (95% CI = 35 to 59%) (Figure S1). There were 10 cohort studies (3, 7, 104, 106, 174, 166, 229, 233, 315, 337) involving 11,325 participants that compared seroconversion after the first vaccination in patients taking immunosuppressive therapy with

controls. The relative risk of seroconversion in patients taking immunosuppressive therapy was 0.56 (95% CI = 0.46 to 0.70) with major heterogeneity between studies (I² = 93%, χ^2 = 127.95, p<0.0001) (Figure 9).

Figure 9. Seroconversion in patients taking immunosuppressive therapy compared with controls after the first vaccination

	Immunosuppressive t	herapy	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.5.1 autoimmune dis	seases						
Boekel 2021	211	411	182	239	14.0%	0.67 [0.60, 0.76]	•
Firinu 2021	3	30	364	364	3.5%	0.11 [0.04, 0.30]	
Mahil 2021	60	77	17	17	13.7%	0.80 [0.69, 0.92]	+
Prendecki 2021	53	138	68	70	12.7%	0.40 [0.32, 0.49]	-
Rubbert-Roth 2021	5	51	18	20	4.4%	0.11 [0.05, 0.25]	
Shrotri 2021	205	247	7681	7897	14.5%	0.85 [0.81, 0.90]	-
Tallantyre 2021	63	151	77	95	12.7%	0.51 [0.42, 0.64]	T
Subtotal (95% CI)		1105		8702	75.5%	0.50 [0.37, 0.67]	•
Total events	600		8407				
Heterogeneity: Tau ² =	0.13; Chi ² = 132.24, df =	6 (P ≤ 0.	00001); P	'= 95%	,		
Test for overall effect:	Z = 4.60 (P ≤ 0.00001)						
1.5.2 IBD							
Kennedy 2021	475	865	266	428	14.2%	0.88 [0.80, 0.97]	-
Subtotal (95% CI)		865		428	14.2%	0.88 [0.80, 0.97]	•
Total events	475		266				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.54 (P = 0.01)						
1.5.3 indication uncle	ar						
Billany 2021	5	10	70	84	6.4%	0.60 [0.32, 1.12]	
Goupil 2021	4	22	52	109	3.9%	0.38 [0.15, 0.94]	
Subtotal (95% CI)		32		193	10.3%	0.52 [0.31, 0.87]	•
Total events	9		122				
Heterogeneity: Tau ² =	0.00; Chi ² = 0.73, df = 1	(P = 0.39)	; I z = 0%				
Test for overall effect:	Z = 2.50 (P = 0.01)						
Total (95% CI)		2002		9323	100.0%	0.56 [0.46, 0.70]	•
Total events	1084		8795				
Heterogeneity: Tau ² =	0.08; Chi ² = 127.95, df =	9 (P < 0.)	00001); P	'= 93%			
	Z = 5.33 (P < 0.00001)						0.01 0.1 1 10 100 Favours control Favours immunosuppression
	erences: Chi ² = 16.21, di	í= 2 (P = I	D.0003), I	² = 87.7	7%		Favours control Favours immunosuppression

Immunogenicity of the second vaccination in patients taking immunosuppressive therapy

There were 36 cohort or case series studies (7, 15, 23, 37, 45, 51, 71, 85, 104, 109, 110, 114, 145, 166, 174, 180, 226, 229, 233, 236-238, 271, 272, 278, 282-284, 287, 297, 315, 320, 332, 337, 344, 364) evaluating 3585 patients taking immunosuppressive therapy that reported on the proportion seroconverting after their second vaccination. Overall, the seroconversion rate after the second vaccination was 76% (95% CI = 70 to 82%) (Figure S2) although there was funnel plot asymmetry (Figure S3) suggesting this result was driven by smaller studies giving lower seroconversion rates so this pooled result may be an underestimation of the rate. There were 28 cohort studies (7, 15, 45, 51, 71, 85, 104, 109, 110, 114, 145, 166, 174, 226, 229, 233, 237, 238, 271, 272, 278, 282, 283, 287, 315, 320, 337, 344) involving 5,644 participants that compared seroconversion after the second vaccination in patients taking immunosuppressive therapy with controls. The relative risk of seroconversion in patients taking immunosuppressive therapy was 0.78 (95% CI = 0.72 to 0.85) with major heterogeneity between studies (I²=91%, χ^2 = 301.8, p<0.0001) (Figure 10). Most studies reported that the antibody titres were lower in patients taking immunosuppressive therapy compared to controls even in those that had seroconverted (Figure 11).

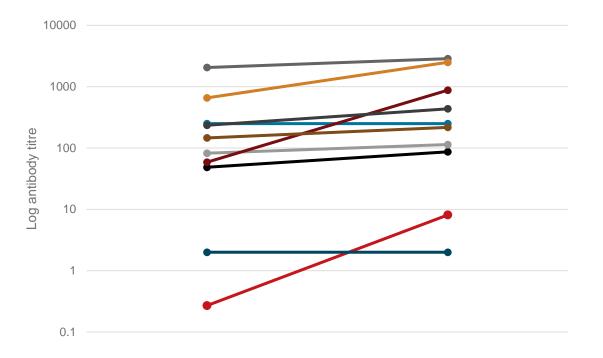


Figure 10. Seroconversion in patients taking immunosuppressive therapy compared with controls after the second vaccination

Study or Subgroup	Immunosuppressive the Events		Contr Events		Weight	Risk Ratio M-H, Random, 95% Cl	Risk Ratio M-H, Random, 95% Cl
.6.1 IBD					0	,,	, , , , , , , , , , , , , , , , , , , ,
)ailey 2021	29	29	4	4	3.0%	1.00 [0.74, 1.34]	
•	17	20	6	7			
Cennedy 2021					2.6%	0.99 [0.70, 1.41]	
Vong 2021	10	10	40	40	4.2%	1.00 [0.88, 1.14]	\mathbf{T}
Subtotal (95% CI)		59		51	9.8%	1.00 [0.89, 1.12]	
fotal events Heteroαeneitv: Tau² = (56 D.00; Chi² = 0.00, df = 2 (P =	1.00): I ^z :	50 = 0%				
Fest for overall effect: Z		,					
.6.2 MS							
Achiron 2021	34	93	78	79	3.2%	0.37 [0.28, 0.48]	- - -
Apostolidis 2021	10	20	10	10	2.1%	0.52 [0.34, 0.82]	
Fallantyre 2021	195	338	85	92	4.3%	0.62 [0.56, 0.70]	-
Subtotal (95% CI)		451		181	9.6%	0.50 [0.33, 0.76]	◆
Fotal events	239		173			. / .	-
].11; Chi² = 16.16, df = 2 (P =	- 0 0002		04			
est for overall effect: Z		- 0.0003), i = 00	70			
.6.3 autoimmune dis	eases						
Boekel 2021	88	96	47	50	4.4%	0.98 [0.89, 1.07]	4
Braun-Moscovici 2021	205	242	22	22	4.4%		+
						0.86 [0.80, 0.94]	
Deepak 2021	85	100	85	86	4.5%	0.86 [0.79, 0.94]	
Firinu 2021	63	67	551	551	4.5%	0.93 [0.88, 1.00]	•]
Giesen 2021	26	26	42	42	4.6%	1.00 [0.94, 1.06]	Ť
Haberman 2021	42	51	25	26	4.1%	0.86 [0.74, 0.99]	-+-
Hadjadj 2021	44	64	21	21	3.9%	0.70 [0.59, 0.84]	
Haidar 2021	58	72	181	195	4.3%	0.87 [0.77, 0.98]	
zmirly 2021	58	83	26	27	4.0%	0.73 [0.62, 0.85]	
/ladelon 2021	24	37	22	22	3.4%	0.66 [0.52, 0.84]	
drak 2021	29	74	10	10	2.9%	0.41 [0.30, 0.56]	
Prendecki 2021	66	103	70	70	4.1%	0.64 [0.56, 0.74]	→
Ramanathan 2021	6	17	16	16	1.4%	0.37 [0.20, 0.69]	
Shrotri 2021	23	24	494	497	4.5%	0.96 [0.89, 1.05]	4
/eenstra 2021	23	24	434	407	4.5% 3.0%	0.84 [0.63, 1.13]	
	,	1064	00	1701	57.9%		
Subtotal (95% CI)		1004	4070	1701	57.9%	0.80 [0.73, 0.88]	•
Fotal events	824		1678				
Heterogeneity: Tau² = (Fest for overall effect: Z	0.02; Chi²= 125.35, df= 14 (Σ= 4.71 (P ≤ 0.00001)	P < 0.00	001); I * =	: 89%			
I.6.4 Rheumatoid dise	ases						
Rubbert-Roth 2021	45	51	20	20	4.3%	0.90 [0.79, 1.01]	-
Shenoy 2021	87	93	30	30	4.5%	0.95 [0.88, 1.02]	-
Stefanski 2021	16	31	30	30	2.7%	0.52 [0.37, 0.74]	
Subtotal (95% CI)	10	175	50	80	11.5%	0.80 [0.59, 1.07]	
	110	115		00	11.370	0.00 [0.55, 1.07]	
Fotal events	148		80	<i>-</i>			
	0.06; Chi² = 27.54, df = 2 (P · I = 1.50 (P = 0.13)	× U.UUUU	1); F= 9	3%			
loon of orestant officient							
	r						
I.6.5 indicaton unclea		9	166	160	0 6 94	<u>[] 27 [[] 11 1 []</u>	
1.6.5 indicaton unclea Broseta 2021	2	6		169 167	0.5%	0.34 [0.11, 1.06]	
1.6.5 indicaton unclea Broseta 2021 Lacson 2021	2 23	6 29 70	142	157	3.8%	0.88 [0.72, 1.06]	
1.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021	2 23 60	78	142 1138	157 1270	3.8% 4.3%	0.88 [0.72, 1.06] 0.86 [0.76, 0.97]	
I.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021 Weigert 2021	2 23	78 16	142	157 1270 157	3.8% 4.3% 2.7%	0.88 [0.72, 1.06] 0.86 [0.76, 0.97] 0.91 [0.64, 1.28]	
1.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021 Weigert 2021 Subtotal (95% CI)	2 23 60 11	78	142 1138 119	157 1270	3.8% 4.3%	0.88 [0.72, 1.06] 0.86 [0.76, 0.97]	
1.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021 Weigert 2021 Subtotal (95% CI) Fotal events	2 23 60 11 96	78 16 129	142 1138 119 1564	157 1270 157	3.8% 4.3% 2.7%	0.88 [0.72, 1.06] 0.86 [0.76, 0.97] 0.91 [0.64, 1.28]	
.6.5 indicaton unclea Broseta 2021 .acson 2021 Stumpf 2021 Veigert 2021 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (2 23 60 11 96 0.00; Chi² = 2.95, df = 3 (P =	78 16 129	142 1138 119 1564	157 1270 157	3.8% 4.3% 2.7%	0.88 [0.72, 1.06] 0.86 [0.76, 0.97] 0.91 [0.64, 1.28]	
I.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021 Weigert 2021 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = (Fest for overall effect: 2	2 23 60 11 96 0.00; Chi² = 2.95, df = 3 (P =	78 16 129 0.40); I ²	142 1138 119 1564	157 1270 157 1753	3.8% 4.3% 2.7% 11.2 %	0.88 (0.72, 1.06) 0.86 (0.76, 0.97) 0.91 (0.64, 1.28) 0.86 (0.78, 0.95)	
I.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021 Weigert 2021 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Fest for overall effect: 2 Fotal (95% CI)	2 23 60 11 96 0.00; Chi ^z = 2.95, df = 3 (P = 2.96 (P = 0.003)	78 16 129	142 1138 119 1564 = 0%	157 1270 157 1753	3.8% 4.3% 2.7%	0.88 [0.72, 1.06] 0.86 [0.76, 0.97] 0.91 [0.64, 1.28]	
1.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = (Fest for overall effect: 2 Fotal (95% CI) Fotal events	2 23 60 11 96 0.00; Chi² = 2.95, df = 3 (P = 2 = 2.96 (P = 0.003) 1363	78 16 129 0.40); I ² 1878	142 1138 119 1564 = 0% 3545	157 1270 157 1753 3766	3.8% 4.3% 2.7% 11.2 %	0.88 (0.72, 1.06) 0.86 (0.76, 0.97) 0.91 (0.64, 1.28) 0.86 (0.78, 0.95) 0.78 (0.72, 0.85)	
.6.5 indicaton unclea Broseta 2021 Lacson 2021 Stumpf 2021 Veigert 2021 Gubtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Total (95% CI)	2 23 60 11 96 0.00; Chi ^z = 2.95, df = 3 (P = Z = 2.96 (P = 0.003) 1363 0.04; Chi ^z = 301.81, df = 27 (78 16 129 0.40); I ² 1878	142 1138 119 1564 = 0% 3545	157 1270 157 1753 3766	3.8% 4.3% 2.7% 11.2 %	0.88 (0.72, 1.06) 0.86 (0.76, 0.97) 0.91 (0.64, 1.28) 0.86 (0.78, 0.95) 0.78 (0.72, 0.85)	• • • •

Figure 11. Median/mean antibody titres for patients taking immunosuppressive therapy and controls

Immunogenicity in patients with malignancy

Therapy to treat malignancy can suppress the immune system and the disease itself can have a negative impact, particularly in the case of hematological malignancy. Given the differences in impact on the immune system, solid and hematological malignancies were evaluated separately as predefined subgroups. A summary of the eligible studies is given in Tables 7 and 8. One study (324) recruited patients with both types of malignancy (Table 7) and compared seroconversion in COVID-19 naïve patients with those that had prior infection. This did not separate seroconversion in solid or hematological malignancy and the overall seroconversion in this case series after the 2nd vaccine was 132/154 (86%) in those that were COVID-19 naïve.

Table 7. Characteristics of eligible studies evaluating immunogenicity in patients with solid
malignancy

Author	Design	Country	Case description	Control description	Vaccine	Titre measured	Duration between 1 st and 2 nd vaccine	
Palich (41)	Cohort	France	breast, lung, gyn, prostate = main types (58% having chemo at time of vaccination). None had prior exposure to COVID 19 Age = 67 Female = 64%	health care workers Age = 55 Female = 37%	BNT162b 2	anti-S total Ig (Roche, Elecsys) and anti-S IgG (Abbott Infinity)	21 days	
Scurr (18)	Cohort	UK	solid cancer patients Age = 52.6 Female = 63%	staff and students Cardiff University Age = 35.6 Female = 69%	BNT162b 2 or ChAdOx1	anti-RBD IgG in house	N/R	
Barriere (54)	Cohort	France	solid tumor patients no priori COVID, 86% treated w/ chemo Age = 69.5 Female = 48%	healthy volunteers no prior COVID Age = 53 Female = N/R	BNT162b 2	anti-RBD total Ig (Roche, Elecsys)	21 days	
Haidar (114)	Cohort	US	various solid malignancies treated over last 12 months across the University of Pittsburgh Health System (majority receiving systemic therapy) Age = 63.1 Female = 71%	health care workers employed across the same health care system Age = 43.7 Female = 72%	BNT162b 2 (41%), mRNA- 1273 (59%) or Ad26.CO V2.S	anti-RBD IgG Beckman Coulter platform	unclear	

Addeo (46)	Case series	US	81% solid, 19% hematological - 37% clinical surveillance 63% chemo or immunotherapy. All COVID naïve (although report on 9 patients that had prior COVID). Demographics are for whole case series as did not separate out the two. Age = 63 Female = 45%	N/A	BNT162b 2 (29%) or mRNA- 1273 (71%)	anti-S IgG (Roche, Elecsys)	3 weeks Pfizer, 4 weeks Moderna
Thakar (16)	Case series	US	67% solid and 33% hematological, 75% active, 56% active chemo. Demographics for all as did not separate Age = 67 Female = 58%	N/A	BNT162b 2 (58%), mRNA- 1273 (31%) and Ad26.CO V2.S (10%)	anti-RBD IgG (Abbott)	21 days
Terpos (184)	Cohort	Greece	solid and hematological malignancies under several systemic therapies, that receiving Immune Checkpoint Inhibitors (table s1, all solid cancer) Age = 66 Female = 39%	matched healthy volunteers Age = 64 Female = N/R	BNT162b 2 (70%), mRNA-12 73 (25%) and AZD1222 (5%) vaccine	SARS-CoV- 2 neutralzing antibody detection kit (GeneScript , NJ)	N/R
Shroff (173)	Cohort	US	Patients with Solid Tumors on Active, Immunosuppressive Cancer Therapy Age = 63.3 Female = 81%	control cohort that also received the Pfizer/BioNTech vaccine Age = 41.4 Female = 66%	BNT162b 2/BioNTec h	anti-RBD IgG and anti-S IgG (Genscript and Sino Biological)	N/R
Monin (143)	Cohort	UK	95 patients with solid cancer and 56 patients with hematological cancer Age = 73 Female = 48%	healthy controls (mostly health- care workers) Age = 73 Female = 48%	BNT162b 2	anti-S IgG	21 days (some had been scheduled to delayed vaccine 12 weeks)
Massarw eh (140)	Cohort	Israel	adult patients with solid tumors undergoing active intravenous anticancer treatment at least 12 days before enrollment	healthy controls - taken from a convenience sample of the patients' family/ caregivers who	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	N/R

			Age = 66 Female = 43%	accompanied them to treatment Age = 62 Female = 68%			
Benda (242)	Case series	Switzerl and	both hematological and solid malignancy - hematological MM (34%) CLL (38%), other (26%) Age = 65.1 Female = 42%	N/A	BNT162b 2	anti-RBD IgG (Elecsys)	21 days
Shrotri (174)	Cohort	UK	solid malignancy Age = N/R Female = N/R	general data for patients not on IMM Age = N/R Female = N/R	BNT162b 2 or ChAdOx1	anti-RBD IgG (Roche Elecsys)	4-12 weeks
lacono (211)	Cohort	Italy	outpatients (≥80 years), solid (72.2%) or hematological malignancies (27.3%) Age = 82 Female = 58%	A group of health care workers, >66 years, 1:2 Age = N/R Female = N/R	BNT162b 2	anti-S IgG	20 days
Goshen- Lago (207)	Cohort	Israel	patients with solid organ cancer Age = 68 Female = 43%	healthy, age- matched health care workers Age = 64 Female = 55%	BNT162b 2	anti-S IgG (Diasorin, Liaison)	N/R
Webber (314)	case series	UK	291 cancer patients on active treatment, most were solid cancer-29 had previous infection Age = 68.2 Female = N/R	patients who ended treatment >6 between 6-12 months on active surveillance	BNT162b 2	SARS-CoV- 2 spike, IgG <25 AU = poor seroconvers ion	21 days
Fong (324)	Case series	Austria	cancer patients with or without prior COVID (64% solid, 36% hematological - did not separate data) Age: 66 Female: 49%	N/A	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	N/R

Strategy for Patient-Oriented Research

Table 8. Characteristics of eligible studies evaluating immunogenicity in patients with hematological malignancy

Author	Design	Country	Case description	Control description	Vaccine	Titre measured	Duration between 1 st and 2 nd vaccine
Agha (47)	Case series	US	HM seen UPMC Hillman Cancer Center, 45% undergoing treatment, 55% observation Age = 71 Female = 48%	N/A	BNT162b 2 (51%) or mRNA- 1273 (42%), 7% not recorded	anti-RBD total Ig Beckman Coulter platform	unclear
Bird (60)	Case series	UK	MM (48 with v. good response to Rx) Age = 67 Female = 41%	N/A	BNT162b 2 (52%) or ChAdOx1 (48%)	anti-S1 IgG	N/R
Cohen (79)	Case series	Israel	vaccinated patients with HM attending whole body PET; 54 had serology (had lymphoma or myeloma) Age = 68.8 Female = 47%	N/A	BNT162b 2	anti-S IgG (Roche, Elecsys)	unclear
Diefenba ch (87)	Case series	US	NHL, HL or CLL Age = 63 Female = 47%	N/A	BNT162b 2 (77%), mRNA- 1273 (23%)	anti-RBD Ig (Sino Biological)	unclear
Ghione (105)	Cohort	US	lymphoma and were having or have had B cell depleting therapies priori COVID excluded Age = N/R Female = N/R	health care workers and volunteers from nursing home no prior COVID Age = N/R Female = N/R	BNT162b 2, mRNA- 1273, Ad26.CO V2.S	anti-S IgG or IgA	unclear
Haidar (114)	Cohort	US	hematological malignancies treated over last 12 months across the University of Pittsburgh Health System Age = 66.3 Female = 51%	health care workers employed across the same health care system Age = 43.7 Female = 72%	BNT162b 2 (41%), mRNA- 1273 (59%) or Ad26.CO V2.S	anti-RBD IgG Beckman Coulter platform	unclear
Harringto n (115)	Case series	UK	CML Age = 45.6 Female = 25%	N/A	BNT162b 2	anti-S IgG	N/R
Harringto n (116)	Case series	UK	variety (e.g. myelofibrosis,	N/A	BNT162b 2	anti-S IgG	N/R

Herishan u	Cohort	Israel	polycythemia (not CML so no duplication) Age = N/R Female = 67% CLL Age = 71	age and sex matched healthy	BNT162b 2 or	anti-RBD IgG (Roche,	3-4 weeks
(120)			Female = 33%	controls Age = 68 Female = N/R	mRNA- 1273	Ĕlecsys)	
Lim (133)	Cohort	UK	lymphoma and were having or have had B cell depleting therapies prior COVID excluded Age = 66 Female = 37%	healthy controls Age = 52	BNT162b 2 (77) or ChAdOx1 (51)	anti-S IgG (MesoScale Discovery)	N/R
Addeo (46)	Case series	US	81% solid, 19% hematological - 37% clinical surveillance 63% chemo or immunotherapy. All COVID naïve (although report on 9 patients that had prior COVID). Demographics are for whole case series Age = 63 Female = 45%	N/A	BNT162b 2 (29%) or mRNA- 1273 (71%)	anti-S IgG (Roche, Elecsys)	3 weeks (Pfizer) or 4 weeks (Moderna)
Thakar (16)	Case series	US	67% solid and 33% hematological, 75% active, 56% active chemo. Demographics are for whole case series. Age = 67 Female = N/R	N/A	BNT162b 2 (58%), mRNA- 1273 (31%) and Ad26.CO V2.S (10%)	anti-RBD IgG (Abbott, ARCHITEC T IgG Quant test)	21 days
Tzarfati (188)	Cohort	Israel	patients with HM with prior COVID excluded Age = 71 Female = 56%	subjects with no HM paired for age, gender, comorbidities and time from vaccination to serology assay were analyzed Age = 69 Female = 44%	BNT162b 2	anti-S1/S2 IgG (Diasorin, Liaison)	N/R
Terpos (330)	Cohort	Greece	myeloma age >18 years; presence or smoldering myeloma (n=38) or active MM (n=213) or	Healthy controls vaccinated at the same centre matched for age and sex	BNT162b 2 (78%) ChAdOx1 (22%)	SARS-CoV- 2 neutralizing antibody detection kit	21 days

			monoclonal gammopathy (n=25) Age = 74 Female = 45%	Age = NR Female = NR		(GeneScript , NJ)	
Roeker (164)	Case series	US	patients with CLL Age = 71 Female = 48%	N/A	BNT162b 2 (n=25) or mRNA- 1273 (n=19)	anti-S1/S2 IgG (Diasorin, Liaison)	N/R
Pimpinelli (156)	Cohort	Italy	42 patients with MM and 50 with myeloproliferative malignancies (20 CML and 30 myeloproliferative neoplasms), on active anti-cancer treatment Age = 73 Female = 47%	36 elderly controls not suffering from cancer Age = 81 Female = 50%	BNT162b 2	anti-S1/S2 IgG (Diasorin, Liaison)	N/R
Parry (153)	Cohort	UK	patients with CLL or small lymphocytic leukemia (SLL) Age = 69 Female = 47%	age-matched healthy donors from local primary care networks Age = N/R Female = N/R	BNT162b 2 (n=154), ChadOx1 (n=145)	anti-S total Ig (Roche, Elecsys)	3 weeks
van Oekelen (151)	Cohort	US	patients with MM, with and without previously documented COVID-19 (60/320 had COVID-19 prior to immunization) Age = 68 Female = 42%	healthy controls- selected from an ongoing observational study -serological data from a subgroup selected to best match the demographics and age of the MM patient population Age = N/R Female = N/R	69.1% BNT162b 2, 27.2% mRNA- 1273, 3.8% unknown	anti-S IgG (SeroKlir Kantaro)	N/R
Monin (143)	Cohort	UK	151 (95 patients with solid cancer and 56 patients with hematological cancer) Age = 73 Female = 26%	healthy controls (mostly health- care workers)54 then excluded 17 had been exposed- not as a control cohort for patients with cancer (who were mostly older in age), but to facilitate comparisons of vaccine	BNT162b 2	anti-S IgG	21 days (some had been scheduled to delayed vaccine 12 weeks)

SPOR Evidence Alliance

	1			immunogonicity			1
				immunogenicity and safety			
				Age = 73			
				Female = 70%			
Maneikis (137)	Cohort	Lithuania	885 patients with HM had received both vaccine doses. (Main analysis: 857 patients anti-S1 IgG seronegative at baseline. Age- matched comparison consist of 315 pts HM aged 18–60) Age = 65	healthy health- care workers had received both vaccine doses age 18-60. Age = 40 Female = 84%	BNT162b 2	anti-RBD IgG (Abbott, ARCHITEC T IgG Quant test)	median 21 days (IQR 21–21)
			Female = 53%				
Ghandili (240)	Case series	Germany	patients with multiple myeloma and related plasma cell dyscrasias, COVID naïve Age = 67.5 Female = 40%	N/A	BNT162b 2, mRNA- 1273 (both 77%) ChAdOx1 (23%)	anti-S IgG (Liaison)	N/R
Benda	Case	Switzerla	both hematological and	N/A	BNT162b	anti-RBD	21 days
(242)	series	nd	solid malignancy - hematological MM (34%) CLL (38%), other (26%) Age = 65.1 Female = 42%		2	IgG (Roche Elecsys)	
Guglielm	Cohort	Italy	Patients with	healthy volunteers	mRNA-	anti-RBD	N/R
elli (252)			myelofibrosis, essential thrombocythemia, polycythemia vera Age = 59 Female = 67%	Age = N/R Female = N/R	1273 (83%), BNT162b 2 (17%)	lgG	
Stampfer (256)	Cohort	US	Patients with MM Age = 68 Female = 41%	contemporaneous aged matched healthy controls Age = 61 Female = 61%	mRNA- 1273 or BNT162b 2	anti-S IgG (Sino Biological)	21-28 days
Pimpinelli (257)	Case series	Italy	Patients with myelofibrosis, essential thrombocythemia, polycythemia vera Age = 72 Female = 52%	N/A	BNT162b 2	anti-S IgG	21 days
Gurion (263)	Case series	Israel	Patients with lymphoma (Hodgkins (12%) and NHL (88%)) Age = 65 Female = 45%	N/A	BNT162b 2	anti-S IgG (Abbott)	21 days

Benjamin (264)	Case series	Israel	Patients with CLL, median times since diagnosis 6.9 years Age = 70 Female = 40%	N/A	BNT162b 2	anti-S IgG (Liaison)	21 days
Re (267)	Case series	France	HM (NHL, 46, MM 23, CLL 10, myeloproliferative disorder 10) Age = 75.5 Female = 33%	N/A	BNT162b 2 (93%) or mRNA- 1273 (7%)	anti-S total Ig	manufacturer s recommendat ions
Ramanat han (272)	Cohort	US	hematological malignancy Age = 60 Female = 26%	health care workers Age = 42 Female = 63%	BNT162b 2 (55%), mRNA- 1273 (44%)	anti-S1 IgG (Euroimmun)	unclear
Caocci (274)	Case series	Italy	myelofibrosis with or without ruxolitinib therapy Age = 66 Female = N/R	N/A	BNT162b 2	anti-S IgG (Liaison)	21 days
Shrotri (174)	Cohort	UK	hematological malignancy Age = N/R Female = N/R	general data for patients not on IMM Age = N/R Female = N/R	BNT162b 2 or ChAdOx1	anti-RBD IgG (Roche Elecsys)	4-12 weeks
Gavriatop oulou (288)	Cohort	Greece	Patients with Waldenstrom Macroglobulinemia, CLL, NHL Age = 75 Female = 52%	volunteer controls of similar age and gender Age = 75 Female = 53%	BNT162b 2 (76%), ChAdOx1 (24%)	Neutralizing antibodies (ELISA cPASS, GenScript)	N/R
Greenber ger (309)	Case series	US	Patients with hematologic malignancies, excluded prior covid exposure Age = 68 Female = 62%	N/A	mRNA- 1273 652, BNT162b 2 793	anti-spike with a positive cutoff of at least 0.8 U/mL	26 days (median)
Ehmsen (308)	case series	Denmark	patients with HM (n= 323) and solid (n=201) Age = 72 Female = 37%	N/A	BNT162b 2 (303), mRNA- 1273 (19)	anti-SARS- CoV-2 spike (anti-S) IgG antibody	N/R
Fox (295)	Case series	UK	patients with B cell malignancies, either receiving active treatment or had received treatment within the last 24 months and solid (n=201)	N/A	BNT162b 2 (n=41) or ChAdOx1 (n=14)	anti-RBD IgG (Roche Elecsys)	1 month

probantes de la SRAP 🕈

			Age = 60				
			Female = 100%				
lacono (211)	Cohort	Italy	outpatients (≥80 years), solid (72.2%) or hematological malignancies (27.3%) Age = 82 Female = 58%	A group of health care workers, >66 years, 1:2 Age = N/R Female = N/R	BNT162b 2	anti-S IgG	N/R
Henrique z (338)	Cohort	France	MM patients undergoing treatment or treatment within one year (11 had prior Covid) Age = 69.9 Female = 49%	Health care giver from same hospital Age = NR Female = NR	BNT162b 2	Neutralizing antibodies (S-Fuse cells and reporter assay)	21 days

Immunogenicity of the first vaccination in solid malignancy patients

There were 10 cohort or case series studies (18, 41, 46, 54, 143, 173, 174, 184, 207, 242) evaluating 1670 patients with solid malignancy that reported on the proportion seroconverting after their first vaccination. Overall, the seroconversion rate after the first vaccination was 60% (95% CI = 38 to 80%) (Figure S4). There were 8 cohort studies (18, 41, 54, 143, 153, 173, 174, 184, 207) involving 10,037 participants that evaluated seroconversion after the first vaccination in patients with solid malignancy compared to controls. The relative risk of seroconversion in patients with solid malignancy was 0.56 (95% CI = 0.38 to 0.81) with major heterogeneity between studies (I^2 =98%, χ^2 = 311.2, p<0.0001) (Figure 12).

Immunogenicity of the first vaccination in hematological malignancy patients

There were 15 cohort or case series studies (46, 60, 115, 116, 143, 153, 156, 174, 240, 242, 252, 256, 288, 295, 330) evaluating 1367 patients with hematological malignancy that reported on the proportion seroconverting after their first vaccination. Overall, the seroconversion rate after the first vaccination was 43% (95% CI = 34 to 53%) (Figure S5). There were 8 cohort studies (143, 153, 156, 174, 252, 256, 288, 330) involving 9507 participants that evaluated seroconversion after the first vaccination in patients with hematological malignancy compared to controls. The relative risk of seroconversion in patients with hematological malignancy was 0.44 (95% CI = 0.32 to 0.60) with major heterogeneity between studies ($I^2 = 98\%$, $\chi^2 = 67.1$, p<0.0001) (Figure 12). There was no statistically significant difference between solid and hematological malignancy (χ^2 for subgroup difference = 0.92, p = 0.34) (Figure 12) in seroconversion after first vaccination.

Figure 12. Seroconversion in patients with solid and hematological malignancy compared with controls after the first vaccination

	Maligna	ancy	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.2.1 solid malignancy	/						
Barriere 2021	58	122	13	13	6.5%	0.49 [0.40, 0.61]	
Goshen-Lago 2021	25	86	220	261	6.3%	0.34 [0.25, 0.48]	_
Monin 2021	21	56	32	34	6.2%	0.40 [0.28, 0.56]	_
Palich 2021	64	110	25	25	6.6%	0.59 [0.50, 0.70]	
Scurr 2021	42	54	27	28	6.6%	0.81 [0.69, 0.95]	
Shroff 2021	35	52	49	50	6.5%	0.69 [0.57, 0.83]	
Shrotri 2021	868	907	7681	7897	6.7%	0.98 [0.97, 1.00]	•
Terpos 2021	15	59	186	283	6.0%	0.39 [0.25, 0.60]	
Subtotal (95% CI)		1446		8591	51.3%	0.56 [0.38, 0.81]	◆
Total events	1128		8233				
Heterogeneity: Tau ² = I	0.27; Chi ž :	= 311.1	7, df = 7 (l	⊂ < 0.00	001); I ² =	98%	
Test for overall effect: 2	Z = 3.04 (P	= 0.002	2)				
1.2.2 Hematological m	nalignancy	1					
Gavriatopoulou 2021	8	58	114	213	5.3%	0.26 [0.13, 0.50]	
Guglielmelli 2021	17	30	14	14	6.3%	0.58 [0.42, 0.81]	_
Monin 2021	8	44	32	34	5.4%	0.19 [0.10, 0.36]	
Parry 2021	63	267	66	93	6.4%	0.33 [0.26, 0.43]	—
Pimpinelli 2021	35	92	19	36	6.1%	0.72 [0.48, 1.08]	
Shrotri 2021	70	100	7681	7897	6.6%	0.72 [0.63, 0.82]	
Stampfer 2021	20	96	25	31	6.0%	0.26 [0.17, 0.40]	
Terpos 2021 (hem)	117	276	145	226	6.6%	0.66 [0.56, 0.78]	-
Subtotal (95% CI)		963		8544	48.7%	0.44 [0.32, 0.60]	◆
Total events	338		8096				
Heterogeneity: Tau ² = I	0.16; Chi ≇∘	= 67.13	, df = 7 (P	< 0.000	l01); l² = 9	30%	
Test for overall effect: 2	Z = 5.21 (P	< 0.000	001)				
Total (95% CI)		2409		17135	100.0%	0.49 [0.35, 0.68]	•
Total events	1466		16329				-
Heterogeneity: Tau ² = 1		= 943 6		(P < 0 0	0001): 🖻	= 98%	
Test for overall effect: 2			•	. 0.0			0.1 0.2 0.5 1 2 5 10
Test for subgroup diffe				P = 0.3i	4) F= 0%		Favours control Favours solid malignancy
reaction adoption build		= 0.5	/2, ui = 1 (0.0		~	

Immunogenicity of the second vaccination in solid malignancy patients

There were 13 cohort or case series studies (16, 41, 46, 54, 114, 140, 143, 173, 174, 207, 211, 242, 314) evaluating 1445 patients with solid malignancy that reported on the proportion seroconverting after their second vaccination. Overall, the seroconversion rate after the second vaccination was 93% (95% CI = 89 to 96%) (Figure S6). There were 7 cohort studies (41, 54, 114, 140, 143, 173, 174) involving 1365 participants that evaluated seroconversion after the second vaccination in patients with solid malignancy compared to controls. The relative risk of seroconversion in patients with solid malignancy was 0.92 (95% CI = 0.85 to 1.00) with major heterogeneity between studies (I² = 91%, χ^2 = 64.4, p<0.0001) (Figure 13).

Immunogenicity of the second vaccination in hematological malignancy patients

There were 31 cohort or case series studies (16, 46, 47, 79, 87, 105, 114, 120, 133, 137, 143, 151, 153, 156, 164, 174, 188, 211, 242, 256, 257, 263, 264, 267, 272, 274, 295, 308, 309, 330, 338) evaluating 5366 patients with hematological malignancy that reported on the proportion seroconverting after their second vaccination. Overall, the seroconversion rate after the second vaccination was 61% (95% CI = 55 to 67%) (Figure S7). There were 15 cohort studies (105, 114, 120, 133, 137, 143, 151, 153, 156, 174, 188, 256, 272, 30, 338) involving 3973 participants that evaluated seroconversion after the second vaccination in patients with hematological malignancy compared to controls. The relative risk of seroconversion in patients with hematological malignancy was 0.62 (95% CI = 0.54 to 0.71) with major heterogeneity between studies (I² = 95%, χ^2 = 291.4, p<0.0001) (Figure 13). There was a statistically significant difference between solid and hematological malignancy (χ^2 for subgroup difference = 24.0, p<0.0001) (Figure 13) in seroconversion after the second vaccination, with hematological malignancies having a lower seroconversion than solid malignancies.

Figure 13. Seroconversion in patients with solid and hematological malignancy compared with controls after the second vaccination

	Maligna	ancy	Conti	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Solid malignand	.y						
Barriere 2021	40	42	24	24	5.0%	0.96 [0.88, 1.05]	
Haidar 2021	28	34	105	107	4.8%	0.84 [0.72, 0.98]	
Massarweh 2021	92	102	78	78	5.0%	0.90 [0.84, 0.97]	+
Monin 2021	18	19	12	12	4.7%	0.96 [0.82, 1.14]	_ _
Palich 2021	210	223	49	49	5.1%	0.95 [0.91, 0.99]	+
Shroff 2021	42	52	50	50	4.8%	0.81 [0.71, 0.93]	
Shrotri 2021	76	76	494	497	5.1%	1.00 [0.98, 1.02]	
Subtotal (95% CI)		548		817	34.5%	0.92 [0.85, 1.00]	◆
Total events	506		812				
Heterogeneity: Tau² =				(P < 0.0)0001); I ^z	= 91%	
Test for overall effect:	Z=1.93 (P = 0.0	5)				
1.1.2 Hematological r	nalignand	cy					
Ghione 2021	36	86	197	201	4.3%	0.43 [0.33, 0.55]	_
Haidar 2021 (hem)	41	75	105	107	4.5%	0.56 [0.45, 0.69]	
Henriquez 2021	30	60	20	20	4.3%	0.51 [0.40, 0.66]	-
Herishanu 2021	66	167	52	52	4.6%	0.40 [0.33, 0.48]	—
Lim 2021	30	96	62	62	4.1%	0.32 [0.24, 0.43]	
Maneikis 2021	643	807	68	68	5.1%	0.80 [0.77, 0.84]	+
Monin 2021	3	5	12	12	2.2%	0.61 [0.31, 1.20]	
Parry 2021	39	55	36	37	4.7%	0.73 [0.61, 0.87]	_ _
Pimpinelli 2021	77	92	36	36	5.0%	0.84 [0.77, 0.93]	
Ramanathan 2021	15	38	16	16	3.5%	0.41 [0.28, 0.61]	
Shrotri 2021	4	5	494	497	3.3%	0.80 [0.52, 1.25]	
Stampfer 2021	64	96	31	31	4.8%	0.68 [0.58, 0.78]	
Terpos 2021 (hem)	196	276	204	226	5.0%	0.79 [0.72, 0.86]	-
Tzarfati 2021	235	315	107	108	5.0%	0.75 [0.70, 0.81]	+
van Oekelen 2021	219	260	67	67	5.0%	0.85 [0.80, 0.90]	▲ ⁺
Subtotal (95% CI)		2433		1540	65.5%	0.62 [0.54, 0.71]	━
Total events	1698		1507				
Heterogeneity: Tau ² =				4 (P <	0.00001);	; l* = 95%	
Test for overall effect:	Z= 6.84 (P < 0.0	0001)				
Total (95% CI)		2981		2357	100.0 %	0.71 [0.62, 0.81]	◆
Total events	2204		2319				
Heterogeneity: Tau² =	0.09; Chi	² = 134	4.37, df=	21 (P <	< 0.00001); I² = 98%	0.5 0.7 1 1.5 2
Test for overall effect:	Z = 5.07 (P < 0.0	0001)				Favours control Favours malignancy
Test for subaroup diff	erences:	Chi ^z = 2	4.04, df=	= 1 (P <	0.00001)), I² = 95.8%	, assure control in avoid a manightancy

Immunogenicity in transplant patients

The more profound immunosuppression that is required to prevent transplant rejection may have an impact on response to SARS-CoV2 vaccination. There were 45 studies (20, 22, 27, 29, 38, 56, 58, 75, 84, 95, 107, 114, 119, 121, 130, 138, 139, 141, 148, 154, 157, 158, 161, 165, 170, 172, 198, 200, 205, 228, 239, 247, 248, 253, 259, 269, 271, 272, 279, 280, 290, 296, 299, 300, 305) that evaluated the immunogenicity of SARS-CoV2 vaccination in transplant patients and these are summarized in Table 9.

Table 9. Characteristics of eligible studies evaluating immunogenicity in transplant patients

Author	Design	Country	Case description	Control description	Vaccine	Titre measured	Duration between 1 st and 2 nd vaccine
Miele (20)	Cohort	Italy	solid organ transplant (5 kidney, 5 lung, 4 liver, 2 heart) median 9 years from transplant Age = 57 Female = 19%	staff that were immunocompetent Age = 44 Female = 57%	BNT162b 2	anti-S IgG (Diasorin, Liaison)	Unclear
Cucchiari (22)	Case series	Spain	kidney transplant (15 eligible also had pancreas) - mean 1.65 years from transplant Age = 57.6 Female = 29%	N/A	mRNA- 1273	anti-S IgG or IgM	4 weeks
Husain (27)	Case series	US	kidney transplants - median 8 years since transplant Age = 66 Female = 39%	N/A	BNT162b 2 (57%) or mRNA- 1273 (43%)	anti-S IgG (Diasorin, Liaison) (n=5) or anti-S IgG (Roche, Elecsys) (n=23)	unclear
Schmidt (51)	Cohort	German y	solid organ transplants with no COVID history, 90% kidney, median 6.5 years transplantation Age = 54.5 Female = 45%	immunocompetent controls Age = 50.6 Female = 70%	BNT162b 2 (20%), mRNA- 1273 (7%) or ChAdOx1 (73%)	anti-S IgG (Quantivac, Euroimmun)	N/R
Benotma ne (56)	Case series	France	kidney transplants - median 6.4 years all naïve to COVID Age = 57.5 Female = 35%	N/A	mRNA- 1273	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	
Bertrand (58)	Cohort	France	kidney transplants - median 6.9 years Age = 63.5 Female = 49%	hemodialysis patients with median duration of 3.1 years	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG	21 days

				Age = 71.2 Female = N/R		Quant test) and (Beijing Wantai Biological Pharmacy Ent Co)	
Chavarot (75)	Case series	France	kidney transplants - median 6.4 years all naïve to COVID Age = 64 Female = 33%	N/A	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	28 days
Danthu (84)	Cohort	France	kidney transplants - median 6.4 years - no prior COVID Age = 64.8 Female = 41%	hemodialysis patients with median duration of 5.1 years no prior COVID Age = 73.5 Female = 41%	BNT162b 2	anti-S IgG (Diasorin, Liaison)	N/R
Firket (95)	cohort	Belgium	kidney transplant - 8.3 years post-transplant Age = 51.2 Female = 55%	Controls Age = 48.2 Female = 35%	BNT162b 2	anti-S IgG (Diasorin, Liaison)	21 days
Grupper (107)	Cohort	Israel	kidney transplant patients (22 in the last 12 months) Age = 58.6 Female = 18%	health care workers from institution that Rx patients Age = 52.7 Female = 68%	BNT162b 2	anti-S IgG (Diasorin, Liaison)	21 days
Haidar (114)	Cohort	US	various solid organ transplants, 87 kidney, heart 35, 33 liver, 18 lung treated over last 12 months across the University of Pittsburgh Health System Age = 61.2 Female = 40%	health care workers employed across the same health care system Age = 43.7 Female = 72%	BNT162b 2 (41%), mRNA- 1273 (59%) or Ad26.CO V2.S	Anti-RBD IgG Beckman Coulter	unclear
Havlin (119)	Cohort	Czech Republi c	Lung transplants - 4.25 years after transplant Age = 52.1 Female = 40%	healthy volunteers Age = N/R Female = N/R	BNT162b 2	anti-S IgG (Diasorin, Liaison)	unclear
Ben Zadock (121)	Case series	Israel	heart transplant - median 9.2 years from transplant Age = 61 Female = 17%	N/A	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	N/R
Korth (130)	Cohort	German y	kidney transplant - no prior COVID, mean time	Health care workers Age = 44.4	BNT162b 2	anti-S IgG (Diasorin, Liaison)	21 days

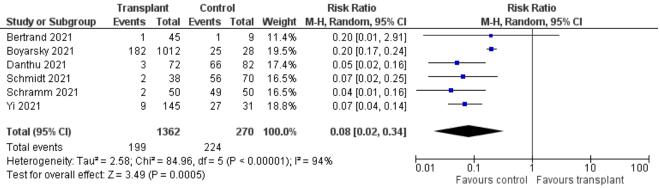
			after transplant = 11.4 years	Female = 61%			
			Age = 57.7 Female = 52%				
Holden (205)	Case series	Denmar k	80 solid organ transplant (SOT) recipients (≥ 18 years of age) Age = 58.9 Female = 45%	N/A	all but one BNT162b 2	anti-S1 IgG (Quantivac, Euroimmun)	N/R
Chevallier (200)	Cohort	France	Allo-HSCT, with no active graft-versus-host disease and more than 3 months after transplant (underline Myeloid and Lymphoid) Age = 57 Female = 40%	26 healthy controls from the Hematology Department staff Age = N/R Female = N/R	BNT162b 2	anti-RBD IgG (Roche, Elecsys)	N/R
Yi (198)	Cohort	US	Kidney transplant recipients Lymphoid) Age = N/R Female = N/R	Kidney waitlist patients Age = N/R Female = N/R	BNT162b 2 or mRNA- 1273	anti-S total Ig	N/R
Shostak (172)	Case series	Israel	lung or heart-lung transplant recipients who received the BNT162b2 vaccine, who had received two doses between Dec 20, 2020, and Feb 8, 2021 Age = 60.5 Female = 33%	N/A	BNT162b 2- BioNTech	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	N/R
Sattler (170)	Cohort	German y	39 age-matched kidney transplant recipients treated with standard immunosuppressive medication, Age = 57.4 Female = 28%	39 healthy controls (majority encompassed health care professionals) + 26 with kidney failure on hemodialysis (HD) Age = 53 Female = 43%	BNT162b 2	anti-S IgG or IgA (Quantivac, Euroimmun)	21 days
Rozen- Zvi (165)	Case series	Israel	consecutive kidney transplant recipients - for a median 7.08 years Age = 57.5 Female = 36%	N/A	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	21 days
Rincon- Arevalo (161)	Cohort	German y	Mixed: dialysis patients (DP) n=44 (40 maintenance hemodialysis+4 peritoneal dialysis),	healthy controls (HC)mainly health care workers n=25 Age = 41 Female = 40%	BNT162b 2- BioNTech	anti-S1 IgG (Quantivac, Euroimmun)	N/R

						1	
			kidney transplant recipients (KTR) n=40 Age = DP 69.0, PD 70.5, KTR 62.5 Female = 36%				
Rabinowi ch (157)	Cohort	Israel	liver transplant recipients Age = 60 Female = 30%	healthy volunteers- healthcare workers with no major comorbidities Age = 52.7 Female = 68%	BNT162b 2- BioNTech	anti-S1 IgG (Diasorin, Liaison)	3 weeks
Peled (154)	Cohort	Israel	stable adult heart transplant recipients Age = 62 Female = 35%	A healthy control group of 136 subjects Age = 63 Female = 63%	BNT162b 2- BioNTech	anti-RBD IgG	N/R
Narasimh an (148)	Cohort	US	lung Transplant Recipients vaccinated for SARS-CoV-2 with 2D (with one previously infected case) Age = 65 Female = 36%	2D-vaccinated LT naïve (non- transplanted and non-exposed to COVID-19) Age = N/R Female = N/R	Pfizer- BioNTech (n=48) and mRNA- 1273 (n=25)	anti-S IgG (Abbott, alinity)	N/R
Mazzola (141)	Cohort	France	Solid organ transplant- recipients without previous COVID-19 Age = 61 Female = 31%	healthy volunteers- healthcare workers with no major co- morbidities Age = 55 Female = 72%	BNT162b 2	anti-RBD IgG (Abbott, alinity)	28 days
Marion (139)	Case series	France	Recipients of solid organ transplant (heart, kidney, liver, or pancreas) Age = 58 Female = 37%	N/A	BNT162b 2 (942), mRNA- 1273 (8)	anti-S Ig (Beijing Wantai Biological Pharmacy Ent Co)	28 days
Marinaki (138)	Cohort	Greece	Solid organ transplant (SOT) recipients (10 kidney and 24 heart) Age = 60 Female = 21%	age- and sex- matched health- care workers (HCW) Age = N/R Female = N/R	BNT162b 2	anti-RBD IgG (Abbott, ARCHITEC T IgG Quant test)	N/R
Cao (228)	Cohort	US	lung (16), kidney (13), heart (6), lung (1), heart lung (1) Age = 64 Female = 27%	immunocompetent controls (also had past COVID controls) Age = 66 Female = 80%	BNT162b 2 or mRNA- 1273	anti-S1 IgG	21 days (IQR 19-25)

Strategy for Patient-Oriented Research

Ram (158)	Case series	Israel	patients undergoing immune cell therapy: allo-HCT (n=66) or after CD19-based CART therapy (n=14) Age = 65 Female = 45%	N/A	BNT162b 2	anti-RBD IgG (Roche, Elecsys)	21 days (range, 17- 36)
Hall (239)	Case series	Canada	patients from transplant program, Lung (26%), kidney (24%), kidney- pancreas (22%), heart (14%), liver (12%) - median 2.96 years from transplant Age = 66.2 Female = 31%	N/A	mRNA- 1273	anti-RBD IgG (Elecsys Roche)	N/R Rashid- Alavijeh
Rashid- Alavijeh (247)	cohort	German y	liver transplant recipients for a median of 8 years Age = 57 Female = 40%	health care workers Age = N/R Female = 55%	BNT162b 2	anti-S IgG (Liaison)	26 days
Midtvedt (248)	Case series	Norway	kidney transplant recipients for a mean of 11.7 years without history of COVID Age = 67.4 Female = 44%	N/A	BNT162b 2	anti-RBD IgG in house	28 days
Di Meo (253)	cohort	Canada	solid organ transplant recipients Age = 61 Female = 3%	health care workers Age = 44 Female = 70%	BNT162b 2 or mRNA- 1273 (50%)	anti-S total Ig (Abbott)	35-39 days
Del Bello (259)	Case series	France	consecutive solid organ transplants, 277 kidney, 69 liver, 34 lung/heart, 6 pancreas, 10 combined - median 7 years Age = 59 Female = 35%	N/A	BNT162b 2	anti-S IgG (Beijing Wantai Biological Pharmacy Enterprise) (228) or other assay (168)	28 days
Hod (269)	Cohort	Israel	Stable renal transplant patients with no prior COVID, mean timre from transplant 5.8 years Age = 59.7 Female = 20%	immunocompetent health care workers Age = 57 Female = 70%	BNT162b 2	anti-RBD- IgG	unclear
Stumpf (271)	cohort	German y	kidney transplant recipients for mean of	kidney transplant recipients for mean of 9.9 years	BNT162b 2 (28%) or mRNA-	anti-S1 IgG or IgA	28 days

Ramanat han (272)	Cohort	US	9.9 years priori COVID excluded Age = 57.3 Female = 35% solid organ transplant (71% kidney, 24% liver, 5% heart) Age = 39	priori COVID excluded Age = 48 Female = 76% health care workers Age = 42 Female = 63%	1273 (72%) BNT162b 2 (62%), mRNA- 1273 (2020)	(Euroimmun) anti-S1 IgG (Euroimmun)	unclear
Herrera (279)	Case series	Spain	Female = 52% Heart (46) and liver (58) transplants after median of 5.4 years with no prior COVID Age = 61 Female = 30%	N/A	(38%) mRNA- 1273	anti-RBD IgG or IgM (Siemens)	28 days
Easdale (280)	Case series	UK	Allo-HCST at least 3 months post-transplant Age = 50 Female = 38%	N/A	BNT162b 2 or ChAdOx1	anti-S1 IgG if neg total (Ortho Clincial Diagnostics)	N/R
Boyarsky (290)	Cohort	US	solid organ transplants COVID naïve (47% kidney, 21% liver, 14% heart, 11% lung) - median 6.2 years since transplant Age = 60 Female = N/R	SOT prior COVID Age = 56.6 Female = N/R	mRNA- 1273	anti-S IgG (Roche) or anti-RBD IgG (Euroimmun)	N/R
Schramm (305)	Cohort	German y	cardiothoracic transplant recipients, none had previous infection Age = 55 Female = 36%	50 healthy staff members Age = 47 Female = N/R	BNT162b 2	anti-SARS- CoV-2 spike protein (S), also reported Neutralizing antibodies against SA RS-CoV-2	N/R
Benotma ne (303)	Cohort	France	41 immunocompromised kidney transplant recipients (KTRs) who had who were already seropositive at baseline because of previous exposure to SARS- CoV- 2. median between infection and vaccination was	22 health- care workers with a history of COVID- 19 who received either the BNT162b2 (n = 19) or the mRNA- 1273 vaccine (n = 3). Age = 47 Female = 77%	mRNA- 1273 in cases	anti-S- IgG (Abbott, ARCHITEC T IgG II Quant test)	N/R


			306 days [IQR]: 171–31 6 days) Age = 59 Female = 37%				
Prendecki (300)	Cohort	UK	920 kidney transplantation recipients Age = 59 Female = 34%	65 health care workers Age = 38 Female = N/R	BNT162b 2 (n=490), ChAdOx1 (n=430) in cases, 55 BNT162b 2 and 15 ChAdOx1 in controls	(Abbott, ARCHITEC T IgG II Quant test)	74 days
Redjoul (299)	Case series	France	HSCT recipients- (184 allogeneic HSCT recipients and 134 autologous HSCT recipients) Age = 59 Female = 13%	N/A	BNT162b 2	spike glyco protein- specific IgG receptor- binding domain (IgG[S- RBD]	4 weeks
Ben-Dov (38)	Cohort	Israel	Kidney transplant patients – median of 4 years from transplant Age = 53.5 Female = 84%	Nephrology health case team healthy controls Age = 43.6 Female = 46%	BNT162b 2 (n=49) mRNA- 1273 (n=64)	Anti-S IgG (Abbot, ARCHITEC T IgG II Quant test).	21 days

Immunogenicity of the first vaccination in transplant patients

There were 12 cohort or case series studies (29, 58, 75, 84, 107, 121, 172, 198, 239, 259, 290, 305) evaluating 2323 transplant patients that reported on the proportion seroconverting after their first vaccination. Overall, the seroconversion rate after the first vaccination was 8% (95% CI = 4 to 14%) (Figure S8). There were 6 cohort studies (29, 58, 84, 198, 290, 305) involving 1632 participants that compared seroconversion after the first vaccination in transplant patients with controls. The relative risk of seroconversion in transplant patients compared to controls was 0.08 (95% CI = 0.02 to 0.34) with major heterogeneity between studies (I² = 94%, χ^2 = 85.0, p<0.0001) (Figure 14).

Figure 14. Seroconversion in transplant patients compared with controls after the first vaccination

Immunogenicity of the second vaccination in transplant patients

There were 33 cohort or case series studies (20, 22, 27, 38, 58, 75, 95, 114, 119, 121, 130, 138, 139, 141, 148, 154, 157, 161, 165, 170, 172, 205, 228, 239, 247, 248, 253, 259, 269, 271, 272, 300, 305) evaluating 4257 transplant patients that reported on the proportion seroconverting after their second vaccination. Overall, the seroconversion rate after the second vaccination was 31% (95% CI = 25 to 37%) (Figure S9). There were 23 cohort studies (20, 38, 58, 95, 107, 114, 119, 130, 138, 141, 148, 154, 157, 161, 170, 228, 247, 253, 269, 271, 272, 300, 305) involving 3883 participants that compared seroconversion after the second vaccination in transplant patients with controls. The relative risk of seroconversion in transplant patients was 0.33 (95% CI = 0.26 to 0.42) with major heterogeneity between studies (I² = 95%, χ^2 = 483.3, p<0.0001) (Figure 15).

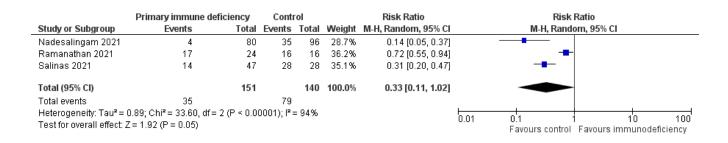
Figure 15. Seroconversion in transplant patients compared with controls after the second vaccination

	Transp	lant	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Ben-Dov 2021	44	137	40	40	5.2%	0.33 [0.26, 0.42]	+
Bertrand 2021	8	45	8	9	3.9%	0.20 [0.10, 0.39]	_ -
Cao 2021	15	37	10	10	4.8%	0.43 [0.29, 0.64]	
Di Meo 2021	2	10	49	49	2.7%	0.23 [0.08, 0.68]	
Firket 2021	3	10	10	10	3.3%	0.33 [0.14, 0.80]	
Grupper 2021	51	136	25	25	5.3%	0.38 [0.31, 0.48]	+
Haidar 2021	68	183	105	107	5.3%	0.38 [0.31, 0.46]	+
Havlin 2021	0	46	10	10	0.7%	0.01 [0.00, 0.18]	←
Hod 2021	52	120	199	202	5.3%	0.44 [0.36, 0.54]	+
Korth 2021	5	23	23	23	3.7%	0.23 [0.11, 0.49]	<u> </u>
Marinaki 2021	20	34	116	116	5.1%	0.59 [0.45, 0.78]	-
Mazzola 2021	38	133	25	25	5.1%	0.29 [0.22, 0.38]	
Miele 2021	6	16	23	23	4.2%	0.39 [0.21, 0.72]	<u> </u>
Narasimhan 2021	18	73	49	49	4.8%	0.25 [0.17, 0.38]	_ —
Peled 2021	14	77	134	136	4.6%	0.18 [0.11, 0.30]	- - -
Prendecki 2021	569	920	65	65	5.5%	0.62 [0.59, 0.66]	•
Rabinowich 2021	38	80	25	25	5.2%	0.48 [0.38, 0.61]	-
Ramanathan 2021	10	21	16	16	4.7%	0.49 [0.32, 0.77]	
Rashid-Alavijeh 2021	34	43	20	20	5.3%	0.80 [0.68, 0.95]	+
Rincon-Arevalo 2021	4	40	55	69	3.1%	0.13 [0.05, 0.32]	
Sattler 2021	4	39	60	64	3.1%	0.11 [0.04, 0.28]	
Schramm 2021	5	50	50	50	3.6%	0.11 [0.05, 0.24]	
Stumpf 2021	140	333	132	134	5.4%	0.43 [0.38, 0.48]	+
Total (95% CI)		2606		1277	100.0%	0.33 [0.26, 0.42]	•
Total events	1148		1249				
Heterogeneity: Tau ² = 0	.30; Chi ^z =	= 483.2	8, df = 22	(P < 0.	00001); P	²= 95%	0.01 0.1 1 10 100
Test for overall effect: Z			•				0.01 0.1 1 10 100 Favours control Favours transplant

In addition, there were four studies evaluating seroconversion in patients undergoing bone marrow transplant. Seroconversion after the first vaccine was seen in 55% in one study (200) and 53% in another (280) involving a total of 167 patients. Seroconversion was observed in 67.5% after the second vaccine in one study involving 77 patients (158) and in 60% in another involving 130 patients (343).

Immunogenicity in patients with a primary immune deficiency

There were four studies (94, 113, 146, 272) that described the immunogenicity of SARS-CoV2 vaccination in patients with a variety of primary immune deficiencies although the majority had combined variable immune deficiency (Table 10).


Table 10. Characteristics of eligible studies evaluating immunogenicity in patients with primary immune deficiency

Author	Design	Country	Case description	Control description	Vaccine	Titre measured	Duration between 1 st and 2 nd vaccine
Salinas (94)	cohort	Italy	Patients with CVID (n=41) and XLA (n=6). Age and sex N/R	Healthy age matched health care workers. Age and sex N/R	BNT162b 2	Anti-S and anti-RBD	21 days
Hagin (113)	case series	Israel	Patients with inborn errors of immunity 18/26 receive immunoglobulins. Age = 48.5, 61.5% female	N/A	BNT162b 2	Anti-RBD (Abbott ARCHITECT IgG Quant test)	N/R
Nadesalin gam (146)	cohort	UK	Patients with various immune deficiency disorders. Age and sex NR	Health care workers from same tertiary care centre as cases. Age and sex NR	BNT162b 2 or ChAdOx1	Detectable neutralizing antibodies	N/A
Ramanat han (272)	cohort	US	Primary immune deficiencies (54% CVID, 46% other). Age = 48, 66.6% female	Health care workers. Age = 42, 62.5% female	BNT162b 2 (66%) or mRNA- 1273 (34%)	Anti-S IgG (Euroimmun)	N/R

One cohort study (146) described seroconversion after the first vaccination with 4/80 (5%) having detectable neutralizing antibodies to the B.1.1.7 strain in the primary immune deficiency group compared to 41/94 (44%) in healthy controls. There were three cohort or case series studies (94, 113, 272) in 97 patients with primary immune deficiency that described the proportion seroconverting after the second vaccination. The pooled rate was 56% (95% CI = 28 to 82%) (Figure S10). Given the paucity of data the three cohort studies (94, 146, 272) (291 participants) that compared seroconversion in primary immune deficiency with healthy controls for either the first or the second vaccine were pooled (Figure 16). The relative risk of seroconversion in the primary immune deficiency group compared to controls was 0.33 (95% CI = 0.11 to 1.02) with major heterogeneity between studies (I² = 94%, χ^2 = 33.6, p<0.0001) (Figure 16).

Figure 16. Seroconversion in primary immune deficiency patients compared with controls after either the first or second vaccination

Immunogenicity in dialysis patients

Dialysis patients are not classified as being immunocompromised, but reports suggest that patients undergoing dialysis mount less of an immune response to SARS-CoV2 vaccination than healthy controls (161). There were 38 studies (3, 4, 24, 32, 38, 40, 49, 58, 84, 90, 91, 97, 106, 108, 122, 131, 135, 145, 161, 163, 171, 175, 182, 186, 195, 196, 225, 237, 243, 246, 271, 282, 286, 289, 302, 325, 336, 342) that evaluated SARS-CoV2 vaccination in dialysis patients, and these are summarized in Table 11.

Author	Design	Country	Case description	Control description	Vaccine	Titre measured	Duration between 1 st and 2 nd vaccine
Attias (3)	Case series	France	maintenance hemodialysis Age = N/R Female = 20%	N/A	BNT162b 2	anti-S1 IgG antibodies	28 days
Billany (4)	case series	UK	maintenance hemodialysis, 10% immunosuppression, 20% previous COVID Age = 62.1 Female = 40%	N/A	BNT162b 2 or ChAdOx1	anti-RBD IgG (Siemans ADVIA Centaur Xp/XPT assay)	
Chan (24)	Case series	US	maintenance hemodialysis Age = 70 Female = 5%	N/A	mRNA- 1273	anti-RBD IgG	28 days
Agur (49)	Case series	Israel	hemodialysis and PD, patients with prior COVID or immunosuppression excluded	N/A	BNT162b 2	anti-S IgG antibodies (Abbott)	21 days

Table 11. Characteristics of eligible studies evaluating immunogenicity in dialysis patients

SPOR Evidence Alliance

			Age = 71.5 Female = 34%				
Anand (32)	Case series	US	patients on dialysis who were COVID -ve prior to being vaccinated provide much larger numbers who were assessed but outcome data on only a subset Age = N/R Female = N/R	N/A	BNT162b 2 (34%), mRNA- 1273 63%), Ad26.CO V2.S (3%)	anti-RBD IgG (Siemens)	N/R
Ben-Dov (38)	Cohort	Israel	Dialysis patients – median of 2.8 years Age = 65.1 Female = 70%	Nephrology health case team healthy controls Age = 43.6 Female = 46%	BNT162b 2 (n=49) mRNA- 1273 (n=64)	Anti-S IgG (Abbot, ARCHITEC T IgG II Quant test).	21 days
Broseta (40)	Case series	Spain	hemodialysis, mean of 67.9 months (5% on immunosuppressive therapy) all sero -ve at baseline Age = 70.9 Female = 33%	N/A	BNT162b 2 (43%) or mRNA- 1273 (57%)	anti-S1 IgG (Siemens)	21-28 days
Bertrand (58)	case series	France	hemodialysis patients with median duration of 3.1 years Age = 71.2 Female = 34%	N/A	BNT162b 2	anti-S1 IgG levels (Abbott)	21 days
Danthu (84)	Cohort	France	hemodialysis patients with median duration of 5.1 years Age = 73.5 Female = 41%	Health care workers Age = 51.6 Female = 43%	BNT162b 2	anti-S1 IgG levels (Abbott)	N/R
Duarte (90)	Case series	Portugal	hemodialysis patients- 35 months; Age = 75.1 Female = N/R 25 Peritoneal dialysis - 18 months Age = 60.5 Female = N/R	N/A	BNT162b 2	anti-S1 IgG antibodies	21 days
Ducloux (91)	Case series	France	45 hemodialysis COVID naïve who had 3 doses Age = unclear Female = unclear	N/A	BNT162b 2	anti-S1 IgG levels (Abbott)	unclear
Frantzen (97)	Case series	France	Hemodialysis patients attending dialysis Marseille clinic (1 on immunosuppressive	N/A	BNT162b 2	anti-S IgG antibodies (Elecsys)	21 days

			therapy, 13% previous COVID infection) Age = 71 Female = 30%				
Goupil (106)	Cohort	Canada	hemodialysis patients COVID naïve - mean duration 3.8 years; hemodialysis patients with previous COVID - mean duration 3.4 years Age = 70 Female = 34%	controls COVID naïve; controls previous COVID Age = 47 Female = 65%	BNT162b 2	anti-RBD IgG	N/R
Grupper (108)	Cohort	Israel	hemodialysis patients - 3.25 years (1 patient on immunosuppression) Age = 74 Female = 25%	healthy volunteers from same academic institution Age = 57 Female = 73%	BNT162b 2	anti-S IgG antibodies (Abbott)	21 days
Jahn (122)	Cohort	German y	hemodialysis patients - 4.33 years (none had prior COVID) Age = 68 Female = 43%	health care workers vaccinated Age = 45.5 Female = 56%	BNT162b 2	anti-S IgG antibodies (Liaison, Diarson, Italy)	N/R
Lesny (131)	Cohort	German y	hemodialysis - for average 2.1 years or PD Age = 64 Female = 13%	health care workers Age = 54 Female = 93%	BNT162b 2 (48%) or ChAdOx1 (52%)	anti-RBD IgG	N/R
Yau (196)	Cohort	Canada	142 in-centre hemodialysis patients (2 had covid at baseline) Age = 72 Female = 30%	35 health care worker controls (3 had covid at baseline) Age = 46 Female = 94%	BNT162b 2	anti-S IgG and anti- RBD IgG	mean 21 days (range 19-28)
Yanay (195)	Cohort	Israel	chronic dialysis patients (127 hemodialysis and 33 peritoneal dialysis patients) who completed vaccination with BNT162b2 vaccine Age = 69 Female = 37%	hospital employees of all sectors who completed vaccination with BNT162b2 vaccine Age = 50.5 Female = 49%	BNT162b 2	anti-S IgG antibodies (Liaison, Diarson, Italy)	21-35 days
Torreggia ni (186)	Case series	France	All the chronic hemodialysis patients treated in the centre, those vaccinated Age = 69.9 Female = 41%	N/A	BNT162b 2	anti-S IgG antibodies (Elecsys)	3 weeks
Stengert (182)	Cohort	German y	Patients with chronic renal insufficiency on	healthcare workers	BNT162b 2	anti-S IgG antibodies	21 days

			intermittent hemodialysis Age = 69 Female = 42%	vaccinated at the same time points Age = 54.5 Female = 82%		and anti- RBD IgG	
Simon (145)	Cohort	Austria	Hemodialysis Patients Age = 67 Female = 28%	volunteer healthcare workers who had been vaccinated using the same regimen Age = 49 Female = 61%	BNT162b 2 mRNA- 1273	Elecsys® Anti-SARS- CoV-2 test, which measured the nucleoc apsid (N) antibodies	21 days
Schrezen meier (171)	Cohort	German y	chronic kidney disease stage 5 before on dialysis Age = 74 Female = 26%	Vaccinated Non- Dialysis Controls with other Co- Morbidities (n = 44 control patients without dialysis) Age = 80 Female = 68%	BNT162b 2	anti-S IgG antibodies (Euroimmun)	N/R
Rodrigue z- Espinosa (163)	Case series	Spain	peritoneal dialysis patients Age = 61.5 Female = 63%	N/A	mRNA- 1273	anti-S1 IgG (Siemens)	28 days
Longlune (135)	Case series	France	chronic dialysis patients (hemodialysis (n=85) or peritoneal dialysis (n= 24)) 5 had covid history at baseline Age = 64 Female = 31%	N/A	BNT162b 2	anti-S1 IgG	28 days
Lobriola (225)	Cohort	Belgium	Nursing home residents on in-center hemodialysis at five hospitals from the UC Louvain network, Age = 81 Female = 56%	Non-dialysed nursing home resident matched for COVID history were controls Age = 88 Female = 64%	BNT162b 2	anti-RBD (Roche Elecsys)	N/R
Lacson (237)	Case series	US	Dialysis Clinic, Inc. (DCI) dialysis clinics in the US that assessed antibody response following administration of mRNA vaccines (30 clinics in 8 states) Age = 68 Female = 47%	N/A	BNT162b 2 (90%) or mRNA- 1273 (10%)	anti-S1 IgG	manufacturer s recommendat ions
Garcia (243)	Case series	US	dialysis at home or at a dialysis clinic Age = N/R Female = N/R	N/A	BNT162b 2 (62%), mRNA- 1273	total RCT-Ig	manufacturer s recommendat ions

					(20%), Ad26.CO V2.S (18%)		
Zitt (246)	case series	Austria	In-centre dialysis patients that were COVID naïve Age = 67.6 Female = 32%	N/A	BNT162b 2	anti-RBD IgG (Liaison, Diarson, Italy)	21 days
Stumpf (271)	Cohort	German y	hemodialysis (95%) and peritoneal dialysis (5%) for a mean of 5.7 years Age = 67.6 Female = 35%	health care workers prior COVID excluded Age = 48 Female = 76%	BNT162b 2 (28%) or mRNA- 1273 (72%)	anti-S1 IgG or IgA (Euroimmun)	28 days
Weigert (282)	Cohort	Portugal	Chronic hemodialysis patients without COVID with median dialysis duration of 46 months Age = 72 Female = 32%	random selection from a pool of health care workers and nursing home residents Age = 73 Female = 53%	BNT162b 2	anti-S IgG (Roche, Elecsys)	21 days
Kaiser (286)	case series	Austria	hemodialysis patients for median 2.4 years Age = 66.6 Female = 39%	N/A	BNT162b 2 (33.6%). mRNA- 1273 (66.4%)	anti-RBD IgG (Abbott)	N/R
Espi (289)	Cohort	France	hemodialysis patients for 4.1 years Age = 64.9 Female = 35%	unmatched healthy volunteers Age = 46.6 Female = 53%	BNT162b 2	anti-RBD IgG (Snibe Diagnostic, Shenzen, China))	3-5 weeks
Rincon- Arevalo (161)	Cohort	German y	Mixed: dialysis patients (DP) n=44 (40 maintenance hemodialysis+4 peritoneal dialysis), kidney transplant recipients (KTR) n=40 Age = DP 69.0, PD 70.5, KTR 62.5 Female = N/R	healthy controls (HC) mainly health care workers n=25 Age = 41 Female = 40%	BNT162b 2	anti-S1 IgG (Quantivac, Euroimmun)	3-4 weeks
Clarke (302)	Cohort	UK	hemodialysis patients (465/1021 (45.8%) had evidence of natural infection – were	65 health care workers were used as a control group	BNT162b 2 (n=523), ChAdOx1 (n=498) in	anti-S1 IgG levels (Abbott)	63 days

probantes de la SRAP +

			excluded from assessment of efficacy in general but included in the impact of prior COVID analysis Age = 67 Female = N/R	Age = 38 Female = N/R	cases, vs 50 BNT162b 2 and 15 ChAdOx1 in control		
Sattler (170)	Cohort	German y	26 with kidney failure on hemodialysis (HD) Age = 67.4 Female = 35%	39 healthy controls (majority health care professionals) Age = 53 Female = 49%	BNT162b 2	anti-S IgG or IgA (Quantivac, Euroimmun)	21 days
Tylicki (336)	Case series	Poland	Patients with hemodialysis for mean of 3 years (28% prior COVID considered separately Age: covid naïve = 70, prior covid = 65 Female: covid naïve 38%, prior covid 34%	N/A	BNT162b 2	anti-S IgG antibodies (Liaison, Diarson, Italy)	21 days
Blazquez- Navarro (325)	Case series	German y	Hemodialysis patients Age: 67 Female: 36%	N/A	BNT162b 2	anti-S IgG (Quantivac, Euroimmun)	N/R
Speer (342)	Cohort	German y	Patients on long term hemodialysis median 5 years Age: 74 Female: 45%	Healthy controls Age: 48 Female: 59%	BNT162b 2	anti-S1 IgG (Siemens, Germany)	19-22 days

Immunogenicity of the first vaccination in dialysis patients

There were 18 cohort or case series studies (3, 4, 40, 58, 84, 90, 106, 131, 135, 163, 171, 186, 196, 225, 246, 271, 282, 342) evaluating 1398 dialysis patients that reported on the proportion seroconverting after their first vaccination. Overall, the seroconversion rate after the first vaccination was 49% (95% CI = 39 to 59%) (Figure S11). There were 7 cohort studies (84, 106, 131, 225, 271, 282, 342) involving 1042 participants that compared seroconversion after the first vaccination in dialysis patients with controls. The relative risk of seroconversion in dialysis patients compared to controls was 0.62 (95% CI = 0.49 to 0.80) with major heterogeneity between studies ($l^2 = 86\%$, $\chi^2 = 42.4$, p<0.0001) (Figure 17).

Figure 17. Seroconversion in dialysis patients compared with controls after the first vaccination

	Dialys	sis	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Danthu 20021	59	75	7	7	18.2%	0.84 [0.67, 1.03]	-=-
Goupil 2021	72	150	39	40	19.1%	0.49 [0.41, 0.59]	+
Lesny 2021	4	23	8	14	4.7%	0.30 [0.11, 0.83]	_
Lobriola 2021	28	34	40	45	18.8%	0.93 [0.77, 1.12]	+
Speer 2021	2	20	12	15	2.9%	0.13 [0.03, 0.48]	
Stumpf 2021	172	278	53	55	20.3%	0.64 [0.58, 0.71]	•
Weigert 2021	42	143	71	143	16.0%	0.59 [0.44, 0.80]	
Total (95% CI)		723		319	100.0%	0.62 [0.49, 0.80]	•
Total events	379		230				
Heterogeneity: Tau ² =	: 0.07; Ch	i² = 42.	45, df = 6	(P ≤ 0.	.00001); P	²= 86%	0.02 0.1 1 10 50
Test for overall effect:	Z= 3.78	(P = 0.0	1002)				0.02 0.1 1 10 50 Favours control Favours dialysis

Immunogenicity of the second vaccination in dialysis patients

There were 32 cohort or case series studies (3, 24, 32, 38, 40, 49, 58, 90, 91, 97, 108, 122, 135, 161, 163, 170, 171, 175, 182, 195, 196, 237, 243, 246, 271, 282, 286, 289, 302, 325, 336, 342) evaluating 6142 dialysis patients that reported on the proportion seroconverting after their second vaccination. Overall, the seroconversion rate after the second vaccination was 89% (95% CI = 86 to 92%) (Figure S12). There were 14 cohort studies (38, 108, 122, 161, 170, 171, 175, 195, 196, 271, 282, 289, 302, 342) involving 3573 participants that compared seroconversion after the second vaccination in dialysis patients with controls. The relative risk of seroconversion in dialysis patients was 0.86 (95% CI = 0.82 to 0.91) with major heterogeneity between studies (I² = 88%, χ^2 = 107.5, p<0.0001) (Figure 18).

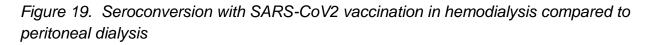


Figure 18. Seroconversion in dialysis patients compared with controls after the second vaccination

	Dialys	sis	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Ben-Dov 2021	108	148	40	40	7.4%	0.74 [0.66, 0.82]	_
Clark 2021	475	553	65	65	9.4%	0.86 [0.83, 0.90]	+
Espi 2021	87	106	30	30	7.5%	0.83 [0.75, 0.92]	_
Grupper 2021	54	55	95	95	9.3%	0.98 [0.93, 1.02]	
Jahn 2021	67	72	16	16	7.3%	0.95 [0.86, 1.06]	
Ricon-Arevalo 2021	31	44	25	25	4.4%	0.71 [0.59, 0.87]	
Sattler 2021	22	26	39	39	5.1%	0.84 [0.71, 1.00]	
Schrezenmeier 2021	29	36	42	44	5.1%	0.84 [0.71, 1.00]	
Simon 2021	64	81	80	80	7.0%	0.79 [0.71, 0.89]	_
Speer 2021	14	17	46	46	3.8%	0.81 [0.65, 1.02]	
Stumpf 2021	1083	1136	132	134	9.7%	0.97 [0.94, 0.99]	+
Weigert 2021	130	143	136	143	8.8%	0.96 [0.90, 1.02]	
Yanay 2021	144	160	132	132	9.1%	0.90 [0.85, 0.95]	
Yau 2021	52	72	35	35	5.9%	0.73 [0.63, 0.85]	_
Total (95% CI)		2649		924	100.0%	0.86 [0.82, 0.91]	•
Total events	2360		913				
Heterogeneity: Tau ² = 0	•		•	3 (P < C).00001);	I ^z = 88%	0.5 0.7 1 1.5 2
Test for overall effect: Z	.= 5.14 (P	< 0.00	001)				Favours control Favours dialysis

Comparison of hemodialysis and peritoneal dialysis

One study (131) reported that seroconversion was better in patients on peritoneal dialysis compared to hemodialysis. This hypothesis was tested in a *post-hoc* analysis of the studies. There were 5 cohort studies (49, 90, 131, 135, 195) evaluating 501 patients that compared the two types of dialysis. There was no statistically significant difference between hemodialysis and peritoneal dialysis (RR = 0.92; 95% CI = 0.80 to 1.07) with major heterogeneity between studies (I² = 74%, χ^2 = 15.3, p = 0.004) (Figure 19).

	hemodia	lysis	peritoneal di	ialysis		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl
Agur 2021	114	122	22	23	27.8%	0.98 [0.88, 1.08]		+
Duarte 2021	36	42	25	25	25.0%	0.87 [0.75, 0.99]		
Lesny 2021	4	23	4	4	2.6%	0.21 [0.09, 0.50]		
Longlune 2021	69	82	17	20	19.7%	0.99 [0.81, 1.22]		-+-
Yanay 2021	115	127	29	33	24.9%	1.03 [0.90, 1.18]		+
Total (95% CI)		396		105	100.0%	0.92 [0.80, 1.07]		•
Total events	338		97					
Heterogeneity: Tau ² =	= 0.02; Chi ^a	²= 15.32	2, df = 4 (P = 0	.004); l² =	= 74%			
Test for overall effect							0.1	0.2 0.5 1 2 5 10 Favours peritoneal Favours hemodialysis

probantes de la SRAP +

Influence of prior COVID in the immunogenicity of COVID-19 vaccination in the immunocompromised

Studies (106) have reported that the response to COVID-19 vaccination is more robust in patients that have had prior SARS-CoV2 infection. There were 27 studies (3, 4, 7, 16, 22-24, 27, 31, 32, 41, 94, 95, 97, 106, 137, 225, 228, 229, 233, 237, 284, 286, 289, 302, 324, 336) that described seroconversion in patients with prior COVID-19 compared to those that had not been infected in 7174 patients. Where possible, seroconversion after the 2nd vaccination was used. The proportion seroconverting was greater overall in those with prior COVID-19 with a relative risk of 1.36 (95% CI 1.24 to 1.50) with major heterogeneity between studies ($I^2 = 95\%$, χ^2 = 511.8, p<0.0001) (Figure 20). This was, in part, driven by differences in the impact of prior infection on seroconversion depending on what was causing the patient to be immunocompromised. The impact of prior COVID-19 was larger in diseases that impact seroconversion more such as transplant and primary immune deficiency (Table 12).

Group	Number of studies	Number of patients	Relative risk (95% CI)
Dialysis	12	2844	1.13 (1.07 to 1.20)
Primary immune deficiency	1	41	3.64 (1.85 to 7.17)
Malignancy	4	1388	1.13 (1.03 to 1.23)
Transplant	4	218	2.76 (2.15 to 3.55)
Immunosuppressive therapy	6	2683	1.63 (1.08 to 2.48)
Overall	27	7174	1.36 (1.24 to 1.50)

Table 12. Summary of impact of prior COVID-19 according to disease group

Figure 20. The impact of prior COVID-19 on seroconversion with SARS-CoV2 vaccination in the immunocompromised

Musha an Casharana	prior CO		COVID r		Maria Inda	Risk Ratio	Risk Ratio
Study or Subgroup	Events	rotal	Events	rotal	vveight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Dialysis		~ .					
nand 2021	74	91	400	519	4.4%	1.06 [0.95, 1.18]	
Attias 2021	12	12	43	52	4.1%	1.17 [0.99, 1.38]	—
Billany 2021	20	20	55	74	4.2%	1.32 [1.14, 1.53]	
Chan 2021	20	20	38	41	4.3%	1.06 [0.95, 1.19]	+-
Clarke 2021	463	468	475	553	4.6%	1.15 [1.11, 1.19]	+
Espi 2021	14	14	73	92	4.2%	1.22 [1.06, 1.41]	
rantzen 2021	31	32	221	244	4.5%	1.07 [0.99, 1.15]	+-
Joupil 2021	16	19	56	131	3.3%	1.97 [1.49, 2.60]	
(aiser 2021	.0	8	105	108	4.1%	0.98 [0.83, 1.15]	
							-
acson 2021	38	38	127	148	4.5%	1.15 [1.07, 1.24]	
obriola 2021	9	10	19	24	3.2%	1.14 [0.85, 1.52]	
Tylicki 2021	35	_35	87	91	4.5%	1.04 [0.98, 1.10]	Ť.
Subtotal (95% CI)		767		2077	49.9%	1.13 [1.07, 1.20]	•
Total events	740		1699				
Heterogeneity: Tau² = Test for overall effect:				(P < 0.0	0001); I² =	72%	
.1.2 primary immun	ocompron	nised					
Salinas 2021 Subtotal (95% CI)	6	7 7	8	34 34	1.4% 1.4%	3.64 [1.85, 7.17] 3.64 [1.85, 7.17]	
Total events	6		8				
Heterogeneity: Not ap Test for overall effect:	plicable	P = 0.0(
.1.3 Malignancy							
ong 2021	86	89	132	154	4.5%	1.13 [1.05, 1.22]	
Aaneikis 2021	26	28	643	807	4.4%	1.17 [1.05, 1.30]	
Palich 2021	12	15	52	95	3.1%	1.46 [1.07, 2.00]	
Thakar 2021	21	22	166				
	21	154	100	178 1234	4.4% 16.4%	1.02 [0.93, 1.13]	
Subtotal (95% CI)		154		1234	10.470	1.13 [1.03, 1.23]	•
Fotal events Heterogeneity: Tau² = Fest for overall effect:				= 0.06)	; I² = 59%		
.1.4 Transplant							
	11	11	15	27	2604	2 25 14 57 2 541	
Cao 2021	11	11	15	37	2.6%	2.35 [1.57, 3.51]	
Cucchiari 2021	5	5	35	117	2.8%	3.05 [2.11, 4.39]	
Firket 2021	10	10	3	10	1.0%	3.00 [1.25, 7.19]	
Husain 2021	2	3	5	25	0.6%	3.33 [1.09, 10.22]	
Subtotal (95% CI)		29		189	7.0%	2.76 [2.15, 3.55]	
Total events	28		58				
Heterogeneity: Tau² = Test for overall effect:	•		• •	= 0.79)	; I² = 0%		
.1.5 Immunosuppre	ssive ther	ару					
N-Janabi 2021	22	22	80	98	4.3%	1.20 [1.08, 1.35]	
Boekel 2021	53	56	158	355	4.2%	2.13 [1.86, 2.43]	-
(ennedy 2021	76	93	152	772	4.0%	4.15 [3.50, 4.93]	
Prendecki 2021	12	12	54	91	3.8%	1.62 [1.33, 1.99]	
							\perp
Ruddy 2021	17	17	361	387	4.5%	1.04 [0.96, 1.13]	T.
Sormani 2021	68	73	609	707	4.5%	1.08 [1.01, 1.16]	-
Subtotal (95% CI)		273		2410	25.4%	1.63 [1.08, 2.48]	
Fotal events Heterogeneity: Tau² = Fest for overall effect:				(P < 0.0	00001); F	= 99%	
otal (95% CI)		1230		50//	100.0%	1.36 [1.24, 1.50]	
	4407	1230	11.70	5544	100.0%	1.30 [1.24, 1.30]	•
	1167		4172				
Total events				e (n o	000043-1	Z - 0600	
Heterogeneity: Tau ² =				0 (P < U	.00001),1	- 90%	ח'ז ח'ז ח'ז לי לי
	Z = 6.30 (F	P < 0.00	0001)				0.1 0.2 0.5 1 2 5 Favours COVID naive Favours prior COVID

Efficacy of BNT162b2 versus mRNA-1273 for seroconversion in the immunocompromised

Recent observational data (371) from the US has suggested BNT162b2 may be slightly less effective at preventing COVID-19 infections than mRNA-1273. This study (371) was in the general population, and it is unclear whether the two vaccines have different seroconversion rates in the immunocompromised and dialysis populations. To address this question, we identified eligible studies described above that administered either the BNT162b2 or mRNA-1273 to the same population and reported seroconversion proportions by vaccine type after the second vaccination. There were 23 studies (16, 23, 27, 32, 40, 46, 47, 109, 114, 148, 151, 180, 228, 237, 238, 243, 256, 271, 284, 286, 287, 309, 364) evaluating 7046 patients that recorded the efficacy of BNT162b2 and mRNA-1273 in the same population (Figure 21). Overall, BNT162b2 had slightly lower rates of seroconversion than mRNA-1273 with relative risk of 0.94 (95% CI = 0.90 to 0.97) with moderate heterogeneity between studies (I² = 67%, χ^2 = 66.6, p<0.0001) (Figure 21). A proportion of this heterogeneity was due to BNT162b2 being particularly less effective in transplant patients (Table 13).

Group	Number of studies	Number of patients	Relative risk (95% CI)
Immunocompromised	1	585	0.96 (0.86 to 1.07)
Immunosuppressive therapy	7	1506	0.94 (0.85 to 1.03)
Malignancy	6	2211	0.94 (0.87 to 1.01)
Transplant	4	471	0.58 (0.43 to 0.77)
Dialysis	5	2273	0.96 (0.93 to 0.99)
Overall	23	7046	0.94 (0.91 to 0.97)

Table 13. Summary of seroconversion with BNT162b2 versus mRNA-1273 in the immunocompromised and dialysis populations

Figure 21. Seroconversion with BNT162b2 versus mRNA-1273 in the immunocompromised and dialysis populations

	Pfizer	Mode	rna		Risk Ratio	Risk Ratio
Study or Subgroup				Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 immunocompr						
Haidar 2021 Subtotal (95% CI)		296 205 296	289 289	5.9% 5.9 %	0.96 [0.86, 1.07] 0.96 [0.86, 1.07]	_+ ◆
Total events Heterogeneity: Not ap	201 Indicable	205				
Test for overall effect		= 0.43)				
		,				
1.1.2 Immunosuppre						
Connolly 2021	4	19 14		0.2%	0.38 [0.15, 0.96]	
Guerrieri 2021 Izmirly 2021	15 46	30 1 61 17		0.1% 1.5%	1.00 [0.24, 4.18] 1.06 [0.79, 1.43]	
Mrak 2021	21	61 8		0.5%	0.56 [0.32, 0.97]	
Ruddy 2021		198 192		9.3%	0.99 [0.94, 1.04]	+
Sormani 2021		594 175		9.4%	0.90 [0.85, 0.94]	+
Spiera 2021	39	51 29	38	2.1%	1.00 [0.79, 1.27]	
Subtotal (95% CI)		014	492	22.9 %	0.94 [0.85, 1.03]	•
Total events	811	436		000.17 0	- or	
Heterogeneity: Tau ² = Test for overall effect:			5 (P = 0.	.02); F= 6	2%	
Testion overall ellect.	Z = 1.50 (F	- 0.10)				
1.1.3 Malignancy						
Addeo 2021	28	30 88	93	5.9%	0.99 [0.89, 1.10]	+
Agha 2021	15	34 16		0.6%	0.77 [0.47, 1.27]	
Greenberger 2021		793 505		8.8%	0.95 [0.89, 1.01]	-
Stampfer 2021	27	48 37		1.5%	0.73 [0.54, 0.98]	
Thakar 2021 van Oekelen 2021		115 58 221 68		7.6% 4.2%	1.01 [0.94, 1.10]	T
Subtotal (95% CI)		221 00 241	970	4.2 % 28.5%	0.83 [0.72, 0.97] 0.94 [0.87, 1.01]	•
Total events	906	772				
Heterogeneity: Tau² =	= 0.00; Chi ² =	= 11.57, df =	5 (P = 0	.04); l² = 5	7%	
Test for overall effect	Z=1.71 (P	= 0.09)				
1.1.4 Transplant						
Cao 2021	11	28 5	9	0.3%	0.71 [0.34, 1.49]	
Husain 2021	4	16 3		0.1%	1.00 [0.27, 3.66]	
Narasimhan 2021	9	48 9	25	0.2%	0.52 [0.24, 1.14]	
Stumpf 2021	26	99 114		1.0%	0.54 [0.38, 0.77]	
Subtotal (95% CI)		191	280	1.6%	0.58 [0.43, 0.77]	-
Total events	50 - 0.00 [,] Chi z -	131 - 1 10 df - 2		5): IZ = 000	1	
Heterogeneity: Tau ² = Test for overall effect:			(P = 0.7	5), i= 0 %)	
		,				
1.1.5 Dialysis						
Anand 2021		239 343		9.6%	0.93 [0.89, 0.97]	•
Broseta 2021	69 074	75 98		7.9%	0.94 [0.87, 1.01]	
Garcia 2021 Kaiser 2021	874 37	910 288 39 76		10.8% 7.6%	0.98 [0.96, 1.00] 0.96 [0.89, 1.04]	1
Lacson 2021		168 17		5.1%	0.93 [0.82, 1.04]	-
Subtotal (95% CI)		431	842	41.1%	0.96 [0.93, 0.99]	•
Total events	1344	822				
Heterogeneity: Tau² =			(P = 0.1	5); I² = 41	%	
Test for overall effect	Z= 2.76 (P	= 0.006)				
Total (95% CI)	4	173	2873	100.0%	0.94 [0.90, 0.97]	•
Total events	3312	2366				
Heterogeneity: Tau ² =		= 66.58, df =	22 (P < I	0.00001);	I ² = 67%	0.2 0.5 1 2 5
Test for overall effect	Z = 3.33 (P	= 0.0009)				U.2 U.5 1 2 5 Favours mRNA-1273 Favours BNT162b2
Test for subgroup dif	ferences: Cl	hi² = 11.86, d	f = 4 (P :	= 0.02), I ²	= 66.3%	

The effects of vaccination in immunocompromised people

_

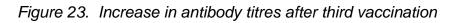
Immunogenicity of a third dose of COVID-19 vaccination

The reduced immunogenicity of COVID-19 vaccination in the immunocompromised and dialysis population has led some to suggest administering a third vaccine to increase seroconversion and augment antibody titres. There were 10 before after studies (91, 135, 194, 201, 217, 219-221, 259, 370) that addressed this hypothesis as well as one randomized controlled trial (310) and these are summarized in Table 14.

Table 14.	Summary of studies	evaluating immunogenicity	of a 3 rd vaccine dose
-----------	--------------------	---------------------------	-----------------------------------

Author	Design	Country	Population description	Vaccine	Titre measured	Duration between 2 nd and 3 rd vaccine	Time after 3 rd vaccine titre measured
Ducloux (91)	Before after	France	Hemodialysis patients that had not had previous COVID-19 infection (by history and serology) and had two BNT162b2 vaccinations	BNT162b 2	anti-S1 IgG (Abbott)	N/R	1 month
Longlune (135)	Before after	France	Dialysis patients (88, hemodialysis, 24 peritoneal dialysis) that had two BNT162b2 vaccinations	BNT162b 2	anti-S total Ig (Beijing Wantai Biological Pharmacy Ent)	1 month	1 month
Werbel (194)	Before after	US	Solid organ transplant patients that had two vaccinations (BNT162b2 (57%) or mRNA-1273 (43%))	BNT162b 2 (16.6%) or mRNA- 1273 (33.3%) or Ad26.CO V2.S (50%)	anti-RBD total Ig (Roche, Elecsys) or anti-S1 IgG (Euroimmun)	67 days	14 days
Espi (201)	Before after	France	Maintenance hemodialysis patients from two centres that had received two BNT162b2 vaccinations and had not had COVID-19 within the last 3 months	BNT162b 2	anti-RBD IgG (Snibe Diagnostic, Shenzen, China)	Within 3 months	10-14 days
Massa (217)	Before after	France	Consecutive kidney transplant patients from a single centre that had received two BNT162b2 vaccinations	BNT162b 2	anti-RBD IgG (Abbott)	28 days	28 days

Frantzen (219)	Before after	France	Maintenance hemodialysis patients from two centres that had received two BNT162b2 vaccinations	BNT162b 2 (58%), mRNA- 1273 (31%) and Ad26.CO V2.S (10%)	anti-S Ig (Roche, Elecsys)	At least one month	1 month
Re (220)	Before after	France	Patients with hematological malignancies (CLL, NHL and MM) that had received two BNT162b2 vaccinations	BNT162b 2	anti-RBD total Ig (Roche, Elecsys)	N/R	3-4 weeks
Benotma ne (221)	Before after	France	Kidney transplant patients from a single centre that had no history of prior COVID- 19 and an anti-S IgG of less than 50 after receiving two BNT162b2 vaccinations	BNT162b 2	anti-S IgG (Abbott, ARCHITEC T IgG Quant test)	51 days	28 days
Del Bello (259)	Before after	France	Consecutive solid organ transplants (majority liver and kidney) that had received two BNT162b2 vaccinations	BNT162b 2	anti-S IgG (Beijing Wantai Biological Pharmacy Ent) (58%), other anti-S IgG assay (42%)	59 days	28 days
Stumpf (370)	Before after	German y	Kidney transplant recipients that received two BNT162b2 vaccinations	BNT162b 2	Anti-RBD IgG (Euroimmun)	68 days	4 weeks
Hall (310)	RCT	Canada	Solid organ transplant recipients that had received two mRNA- 1273 vaccinations randomized to receive third dose of mRNA- 1273 or placebo	mRNA- 1273	anti-RBD Ig (Roche, Elecsys)	2 months	4 weeks (± 1 week)


The one Canadian well conducted RCT by Hall et al. (310) involving 117 transplant patients was included with the ten before after studies as results were similar. The RCT (310) was low risk of bias and increased the GRADE assessment of the quality of the evidence. Overall, there were 11 studies that evaluated 2217 patients (91, 135, 194, 201, 217, 219-221, 259, 310, 370) with an overall increase in seroconversion of 14% (95% CI 7 to 22%) with major heterogeneity between studies ($I^2 = 80\%$, $\chi^2 = 48.9$, p<0.0001) (Figure 22). This heterogeneity was driven, in part, by differences in the benefit of a third vaccination in different groups. One study (220) evaluating hematological malignancy found no increase in seroconversion (although there was an increase in antibody titre in those that seroconverted after the second vaccine). Four studies (91, 135, 201, 219) involving 550 dialysis patients showed an increase in seroconversion of 5% (95% CI = 1 to 10%) with no heterogeneity between studies ($I^2 = 0\%$, χ^2 = 0.4, p = 0.94) (Figure 22). Six studies (194, 217, 221, 259, 310, 370) involving 1551 transplant patients showed an increase in seroconversion of 23% (95% CI = 14 to 31%) with moderate heterogeneity between studies ($I^2 = 55\%$, $\chi^2 = 11.2$, p = 0.05) (Figure 22). This heterogeneity was driven by one study (221) that preselected patients to give a third vaccine based on the level of anti-S antibodies after the second vaccine. If that study (221) was excluded the increase in seroconversion was 26% (95% CI = 21 to 32%) with no heterogeneity between studies ($I^2 = 0\%$, $\chi^2 = 2.96$, p = 0.57). All studies that reported antibody titres found levels were increased after the third vaccine (Figure 23).

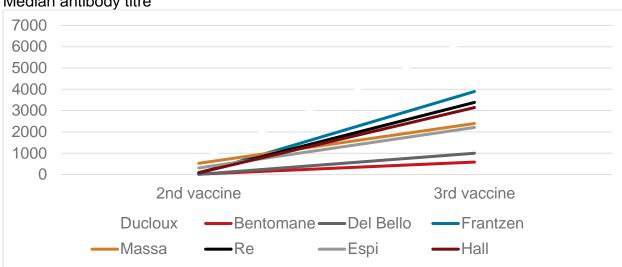


Figure 22. Increased proportion of seroconversion after a third COVID-19 vaccine in the immunocompromised and dialysis populations.

	3rd vac	cine	2nd vac	cine		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Hernodialysis							
Ducloux 2021	42	45	40	45	10.8%	0.04 [-0.07, 0.16]	
Espi 2021	69	75	63	75	11.3%	0.08 [-0.02, 0.18]	+
Frantzen 2021	86	88	82	88	12.5%	0.05 [-0.02, 0.11]	+
_onglune 2021	74	82	69	82	11.3%	0.06 [-0.04, 0.16]	+
Subtotal (95% CI)		290		290	45.9%	0.05 [0.01, 0.10]	◆
Total events	271		254				
Heterogeneity: Tau ² :	= 0.00; Chi	² = 0.40	, df = 3 (P	= 0.94)	; I² = 0%		
Fest for overall effect	: Z = 2.45 ($P = 0.0^{\circ}$	I)				
1.1.2 solid organ tra	nsplant						
Benotmane 2021	78	159	64	159	0.0%	0.09 [-0.02, 0.20]	
Del Bello 2021	269	396	164	396	12.4%	0.27 [0.20, 0.33]	
Hall 2021	33	60	10	57	9.2%	0.37 [0.21, 0.53]	
Massa 2021	38	61	27	61	8.7%	0.18 [0.01, 0.35]	
Stumpf 2021	39	71	23	71	9.3%	0.23 [0.07, 0.38]	· · · · · · · · · · · · · · · · · · ·
Werbel 2021	14	30	6	30	7.0%	0.27 [0.04, 0.50]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		618		615	46.5%	0.26 [0.21, 0.32]	•
Total events	393		230				
Heterogeneity: Tau ² :	= 0.00; Chi	² = 2.96	, df = 4 (P	= 0.57)	; I² = 0%		
Test for overall effect	:: Z = 9.78 (P < 0.0	0001)				
1.1.3 hematologic m	alignancy						
Re 2021	25	43	25	43	7.6%	0.00 [-0.21, 0.21]	
Subtotal (95% CI)		43		43	7.6%	0.00 [-0.21, 0.21]	
Total events	25		25				
Heterogeneity: Not a	pplicable						
Test for overall effect	:: Z = 0.00 (P = 1.0))				
Total (95% CI)		951		948	100.0%	0.15 [0.06, 0.24]	-
Total events	689		509				
Heterogeneity: Tau ² :	= 0.01; Chi	² = 51.0	9, df = 9 (l	P < 0.00	0001); I ² =	82%	-0.5 -0.25 0 0.25 0
Test for overall effect	: Z = 3.35 (P = 0.00	008)				-0.5 -0.25 0 0.25 0 Favours 2nd vaccine Favours 3rd vaccine
Test for subaroup dif	fferences i	Chi⁼ = 3	7 90 df=	2 (P < 1)	1.000011	I ² = 94 7%	ravouls zitu vattille Favouls situ vattille

Median antibody titre

Safety of COVID-19 vaccination in immunocompromised and dialysis patients

We narrowed the focus of evaluation to studies that compared immunocompromised or dialysis patients receiving the vaccine with healthy controls due to the time constraints of this rapid review. We extracted overall adverse events or overall systemic adverse events from both the first and second vaccination. If the study gave adverse events from both the first and second vaccination, we presented the second vaccination data unless there were more than 25% fall in numbers after the first vaccine. This latter rule only applied to one study (143) and the difference between malignancy and healthy control was greater after the second vaccination, but we reported data from the first vaccination to be conservative. Descriptions of these studies have been provided in the above sections.

There were 11 studies (29, 63, 99, 104, 143, 157, 175, 200, 204, 271, 334) evaluating 3479 participants with one study (271) providing information on adverse events for both transplant and dialysis patients. Adverse events were less common in the immunocompromised or dialysis patients compared with healthy controls (RR = 0.67; 95% CI = 0.56 to 0.81) with major heterogeneity between studies ($I^2 = 76\%$, $\chi^2 = 45.5$, p<0.0001) (Figure 24).

Individual adverse events such as myalgia, fatigue, fever, nausea, diarrhea or skin reaction were not more prevalent in immunocompromised patients, but we also assessed reactions that might be specific to this patient group. Ali et al. (296) reported 6/113 patients receiving allogenic hematopoietic stem cell transplantation developed new graft versus host disease (GVHD) 3-55 days after vaccination. Ram et al. (158) noted that 10% of patients receiving allogenic hematopoietic stem cell transplantation developed mild cytopenia after vaccination 3/77 developing an exacerbation of GVHD within a week of vaccination. A further study in this patient group (200) did not note any GVHD or cytopenia. This population is particularly at risk of developing GVHD and cytopenia so these uncontrolled observations are difficult to interpret but this should be studied further.

No adverse event signal was seen in solid organ transplants after two vaccines but there was one (194) case of biopsy proven anti-body mediated rejection in a heart transplant patient within a week of the third vaccine that did not require intervention and did not result in change in heart function.

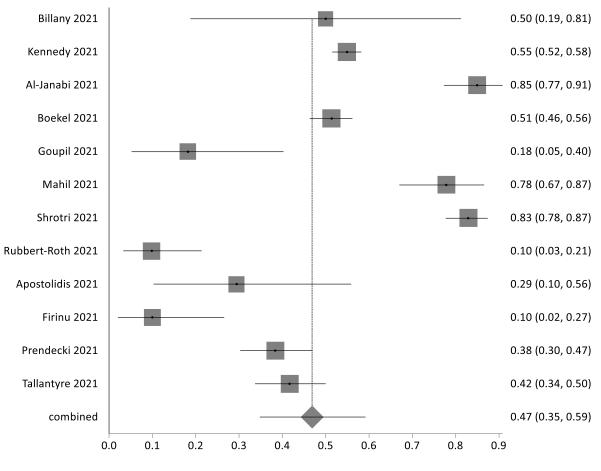
Figure 24. Overall adverse events in immunocompromised and dialysis patients receiving COVID-19 vaccination compared to healthy controls

	Immunocompron	nised	Contr	ol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
1.2.1 Persons with I	IIV							
Frater 2021 Subtotal (95% CI)	22	51 51	32	49 49	8.0% 8.0 %	0.66 [0.45, 0.96] 0.66 [0.45, 0.96]		
Total events	22		32					
Heterogeneity: Not a Test for overall effect								
1.2.2 Immmunosupp	pressive therapy							
Botwin 2021	100	186	41	50	10.8%	0.66 [0.54, 0.79]		
Giesen 2021	11	26	12	38	4.8%	1.34 [0.70, 2.56]		
Mahil 2021 Subtotal (95% CI)	63	80 292	16	17 105	11.1% 26.7 %	0.84 [0.71, 0.99] 0.80 [0.61, 1.04]		
Total events	174		69					
Heterogeneity: Tau² = 0.03; Chi² = 6.65, df = 2 (P = 0.04); l² = 70% Test for overall effect: Z = 1.65 (P = 0.10)								
1.2.3 Malignancy								
Monin 2021 Subtotal (95% Cl)	65	140 140	25	40 40	9.2% 9.2 %	0.74 [0.55, 1.00] 0.74 [0.55, 1.00]		
Total events	65		25					
Heterogeneity: Not a Test for overall effect								
1.2.4 Transplant								
Chevallier 2021	45	94	16	24	8.4%	0.72 [0.50, 1.02]		
Rabinowich 2021	18	71	18	21	7.2%	0.30 [0.19, 0.46]	_ -	
Schmidt 2021	11	38	34	70	5.7%	0.60 [0.34, 1.04]		
Stumpf 2021	119	376	49	148	9.6%	0.96 [0.73, 1.26]	•	
Subtotal (95% CI)		579		263	30.8%	0.60 [0.36, 1.00]	-	
Total events	193		117					
Heterogeneity: Tau² = 0.23; Chi² = 20.84, df = 3 (P = 0.0001); l² = 86% Test for overall effect: Z = 1.97 (P = 0.05)								
1.2.5 Dialysis								
Polewska 2021	55	187	58	160	9.1%	0.81 [0.60, 1.10]		
Simon 2021	14	81	53	80	6.3%	0.26 [0.16, 0.43]		
Stumpf 2021 Subtotal (95% Cl)	315	1304 1572	49	148 388	9.9% 25.4 %	0.73 [0.57, 0.94] 0.56 [0.33, 0.96]	•	
Total events	384		160					
Heterogeneity: Tau ² Test for overall effect		df = 2 (i	P = 0.000	4); ² =	87%			
Total (95% CI)		2634		845	100.0%	0.67 [0.56, 0.81]	•	
Total events	838		403					
Heterogeneity: Tau ²			(P < 0.00	001); P	²= 76%			
Test for overall effect							Favours immunocompromised Favours control	
Test for subgroup di	fferences: Chi ^z = 2.1	7. df = 4	(P = 0.71), ² = (1%			

Conclusion

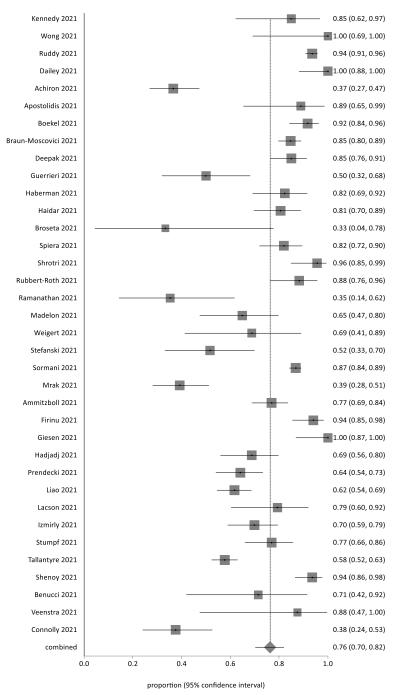
Population studies suggest COVID-19 vaccination has about an 80% efficacy in protecting against both COVID-19 infection and symptoms in the immunocompromised and cancer patients. This is slightly lower than the 90% protection seen in the healthy population. This observation is reflected in a modest reduction in seroconversion after vaccination in patients with solid malignancy, those taking immunosuppressive therapy and those on dialysis. A third vaccination can increase seroconversion by about 5% in these groups. Transplant patients are more severely impacted with only 31% seroconverting after the second vaccine. A third vaccination is more helpful in this group increasing the absolute seroconversion rate by over 20%. Prior COVID-19 infection increases seroconversion, again particularly in transplant patients. mRNA-1273 is slightly more effective than BNT162b2 in the immunocompromised and dialysis populations. There is no major safety concern with COVID-19 vaccination symptoms in the immunocompromised and dialysis patients and overall adverse events are less than in the healthy population.

Strategy for Patient-Oriented Research **SPOR Evidence Alliance** nted Research Alliance pour des données probantes de la SRAP *



Appendix 1: Additional figures

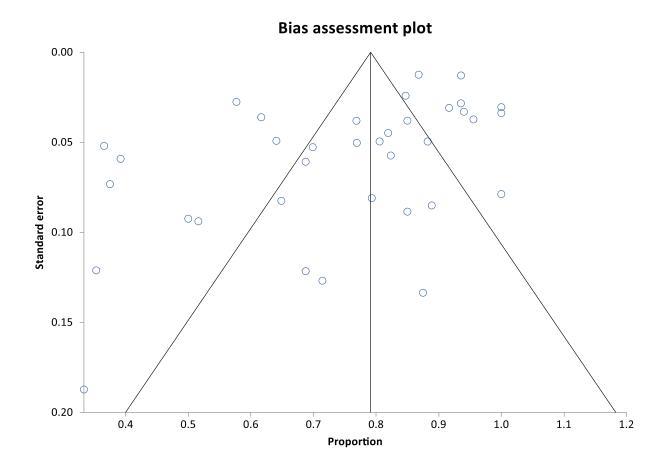
Figure S1. Proportion of patients taking immunosuppressive therapy seroconverting after the first vaccination


Proportion meta-analysis plot [random effects]

proportion (95% confidence interval)

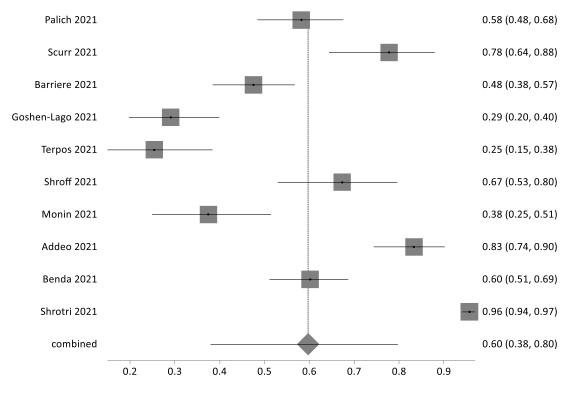
Non-combinability of studies Cochran Q = 292.8 (df = 11) P < 0.0001 $I^2 = 96.2\%$ (95% CI = 95.2% to 97.0%)

Figure S2. Proportion of patients taking immunosuppressive therapy seroconverting after the second vaccination



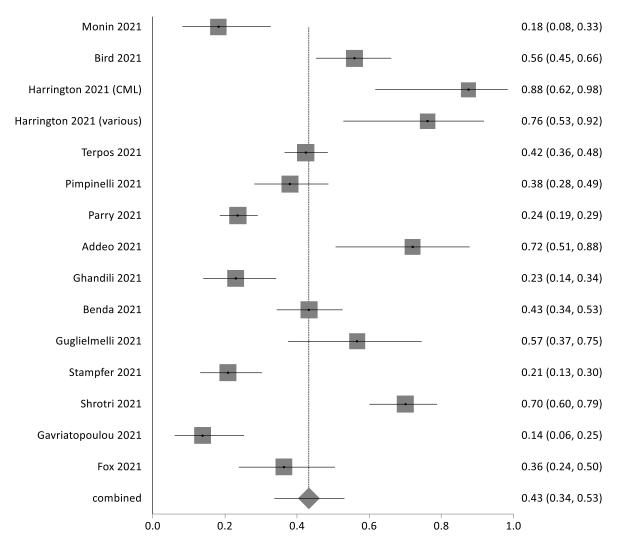
Proportion meta-analysis plot [random effects]

Non-combinability of studies Cochran Q = 542.6 (df = 35) P < 0.0001 $I^2 = 93.5\%$ (95% CI = 92.3% to 94.5%)


Figure S3. Funnel plot of proportion of patients taking immunosuppressive therapy seroconverting after the second vaccination

Bias indicators Begg-Mazumdar: Kendall's -0.279, P = 0.015Egger: bias = -3.30 (95% CI = -5.36 to -1.24), P = 0.002

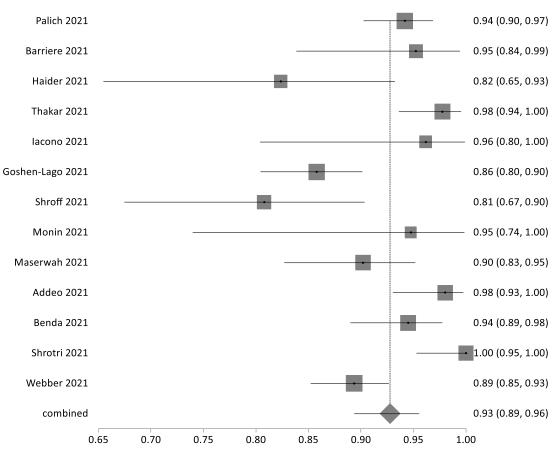
Figure S4. Proportion of patients with solid malignancy seroconverting after the first vaccination


Proportion meta-analysis plot [random effects]

proportion (95% confidence interval)

Non-combinability of studies Cochran Q = 569.3 (df = 9) P < 0.0001 $I^2 = 98.4\%$ (95% CI = 98.1% to 98.6%)

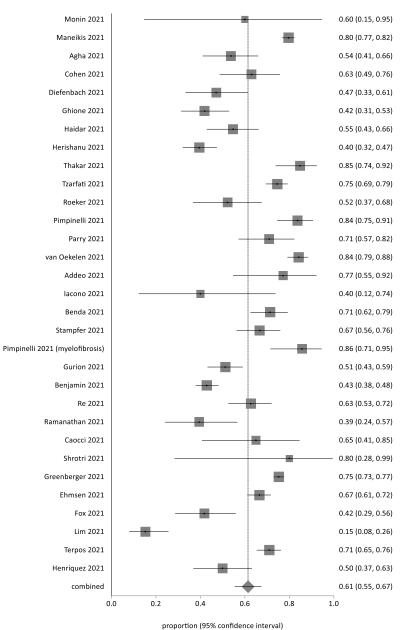
Figure S5. Proportion of patients with hematological malignancy seroconverting after the first vaccination


Proportion meta-analysis plot [random effects]

proportion (95% confidence interval)

Non-combinability of studies Cochran Q = 177.3 (df = 14) P < 0.0001 $I^2 = 92.1\%$ (95% CI = 89.2% to 93.9%)

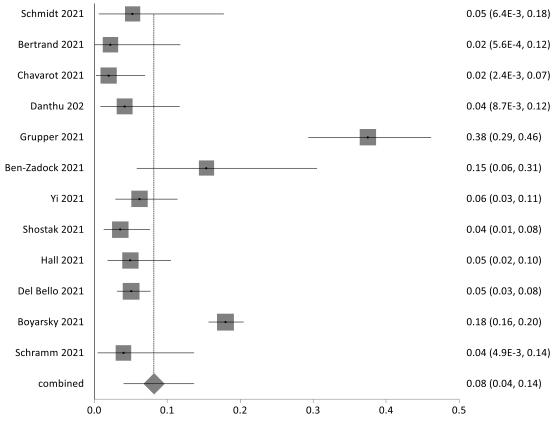
Figure S6. Proportion of patients with solid malignancy seroconverting after the second vaccination


Proportion meta-analysis plot [random effects]

proportion (95% confidence interval)

Non-combinability of studies Cochran Q = 56.4 (df = 12) P < 0.0001 $I^2 = 78.7\%$ (95% CI = 61.8% to 86.2%)

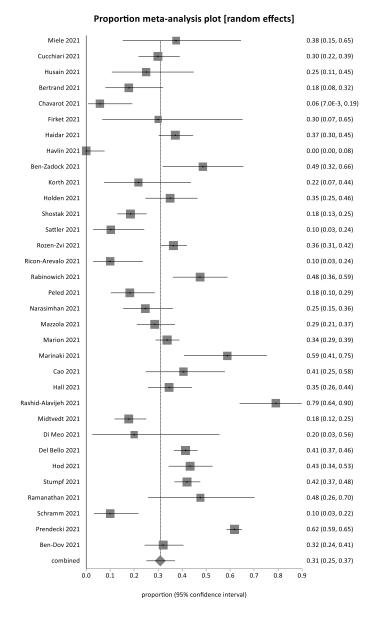
Figure S7. Proportion of patients with hematological malignancy seroconverting after the second vaccination



Proportion meta-analysis plot [random effects]

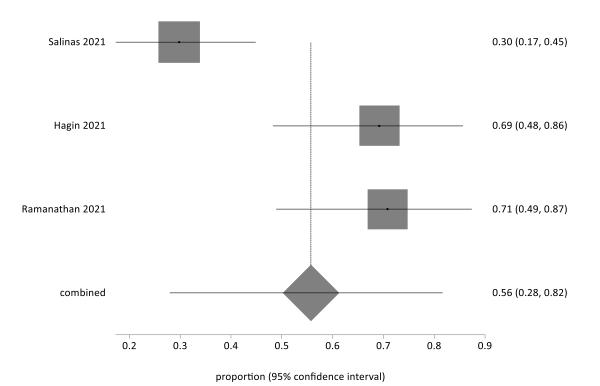
Non-combinability of studies Cochran Q = 527.8 (df = 30) P < 0.0001 $I^2 = 94.3\%$ (95% CI = 93.2% to 95.2%)

Figure S8. Proportion of transplant patients seroconverting after the first vaccination


Proportion meta-analysis plot [random effects]

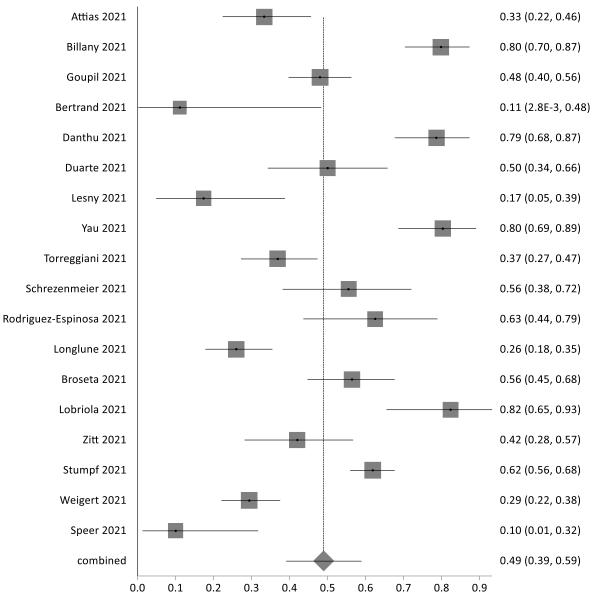
proportion (95% confidence interval)

Non-combinability of studies Cochran Q = 165.0 (df = 11) P < 0.0001 $I^2 = 93.3\%$ (95% CI = 90.7% to 94.9%)


Figure S9. Proportion of transplant patients seroconverting after the second vaccination

Non-combinability of studies Cochran Q = 514.7 (df = 32) P < 0.0001 I^2 = 93.8% (95% CI = 92.6% to 94.7%)

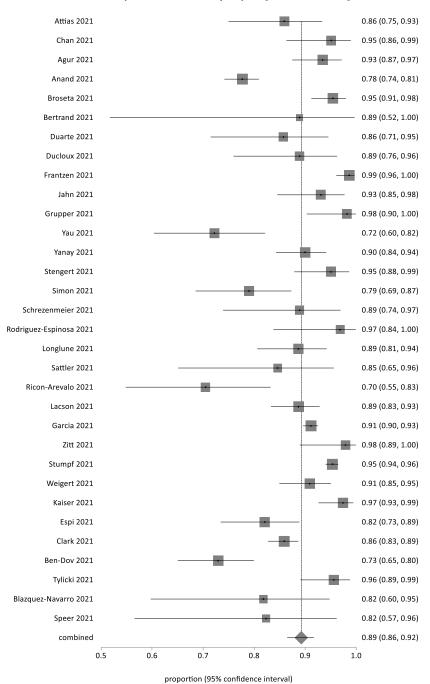
Figure S10. Proportion of primary immune deficiency patients seroconverting after the second vaccination



Proportion meta-analysis plot [random effects]

Non-combinability of studies Cochran Q = 15.8 (df = 2) P = 0.0004 $I^2 = 87.4\%$ (95% CI = 47.3% to 94%)

Figure S11. Proportion of dialysis patients seroconverting after the first vaccination


Proportion meta-analysis plot [random effects]

proportion (95% confidence interval)

Non-combinability of studies Cochran Q = 225.6 (df = 17) P < 0.0001 $I^2 = 92.5\%$ (95% CI = 90.0% to 94.1%)

Figure S12. Proportion of dialysis patients seroconverting after the second vaccination

Proportion meta-analysis plot [random effects]

Non-combinability of studies Cochran Q = 284.2 (df = 31) P < 0.0001 $I^2 = 89.1\%$ (95% CI = 86.1% to 91.2%)

probantes de la SRAP +

References

- 1. Gerber GF, Yuan X, Yu J, Cher BAY, Braunstein EM, Chaturvedi S, Brodsky RA, COVID-19 Vaccines Induce Severe Hemolysis in Paroxysmal Nocturnal Hemoglobinuria. Blood 2021, doi:10.1182/blood.2021011548.
- Lee E-J, Cines DB, Gernsheimer T, Kessler C, Michel M, Tarantino MD, Semple JW, Arnold DM, Godeau B, Lambert MP, et 2. al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. American Journal of Hematology 2021, n/a, doi:https://doi.org/10.1002/ajh.26132.
- Attias P, Sakhi H, Rieu P, Soorkia A, Assayag D, Bouhroum S, Nizard P, El Karoui K. Antibody response to BNT162b2 3. vaccine in maintenance hemodialysis patients. Kidney International 2021, doi:10.1016/j.kint.2021.04.009.
- Billany RE, Selvaskandan H, Adenwalla SF, Hull K, March DS, Burton JO, Bishop NC, Carr EJ, Beale R, Tang JW, et al. 4. Seroprevalence of antibody to S1 spike protein following vaccination against COVID-19 in patients on haemodialysis. A call to arms. Kidnev International 2021. doi:10.1016/i.kint.2021.04.008.
- Goupil R, Benlarbi M, Beaubien-Souligny W, Nadeau-Fredette A-C, Chatterjee D, Goyette G, Lamarche C, Tom A, Finzi A, 5. Suri RS. Short-term antibody response and tolerability of one dose of BNT162b2 vaccine in patients receiving hemodialysis. medRxiv 2021:2021.2003.2030.21254652, doi:10.1101/2021.03.30.21254652.
- Kanji JN, Bailey A, Fenton J, Ling SH, Rivera R, Plitt S, Sligl WI, Taylor S, Turnbull L, Tipples G, et al. Detection of SARS-6. CoV-2 antibodies formed in response to the BNT162b2 and mRNA-1237 mRNA vaccine by commercial antibody tests. medRxiv 2021:2021.2003.2030.21254604, doi:10.1101/2021.03.30.21254604.
- Kennedy NA, Lin S, Goodhand JR, Chanchlani N, Hamilton B, Bewshea C, Nice R, Chee D, Cummings JRF, Fraser A, et al. 7. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut (BMJ) 2021, doi:10.1136/gutinl-2021-324789.
- Konstantinidis T, Zisaki S, Mitroulis I, Konstantinidou E, Kontekaki EG, Romanidoui G, Karvelas A, Nanousi I, Lazidis L, 8. Cassimos D, et al. Levels of produced antibodies after vaccination with mRNA vaccine; effect of previous infection with SARS-CoV-2. medRxiv 2021:2021.2004.2005.21254934, doi:10.1101/2021.04.05.21254934.
- Lacson E, Argyropoulos CP, Manley HJ, Aweh G, Chin AI, Salman LH, Hsu CM, Johnson DS, Weiner DE. Immunogenicity of 9. SARS-CoV-2 Vaccine in Dialysis. medRxiv 2021:2021.2004.2008.21254779, doi:10.1101/2021.04.08.21254779.
- Madhi S, Koen A, Fairlie L, Cutland C, Baillie V, Padayachee S, Dheda K, Barnabas S, Bhorat QE, Briner C, et al. ChAdOx1 10. nCoV-19 (AZD1222) Vaccine in People Living With and Without HIV. 2021, doi:10.21203/rs.3.rs-322470/v1.
- 11. Maneikis K, Sablauskas K, Ringeleviciute U, Vaitekenaite V, Cekauskiene R, Kryzauskaite L, Naumovas D, Banys V, Peceliunas V, Beinortas T, et al. Heterogenous Serological Responses to BNT162b2 mRNA Vaccine in Patients with Haematological Malignancies. SSRN Preprints 2021.
- Monin-Aldama L, Laing AG, Muñoz-Ruiz M, McKenzie DR, Barrio IdMd, Alaguthurai T, Domingo-Vila C, Hayday TS, Graham 12. C, Seow J, et al. Interim results of the safety and immune-efficacy of 1 versus 2 doses of COVID-19 vaccine BNT162b2 for cancer patients in the context of the UK vaccine priority guidelines. medRxiv 2021:2021.2003.2017.21253131, doi:10.1101/2021.03.17.21253131.
- Ou MT, Boyarsky BJ, Motter JD, Greenberg RS, Teles AT, Ruddy JA, Krach MR, Jain VS, Werbel WA, Avery RK, et al. Safety 13. and Reactogenicity of 2 Doses of SARS-CoV-2 Vaccination in Solid Organ Transplant Recipients. Transplantation 2021, doi:10.1097/TP.000000000003780.
- 14. Shinde V. Bhikha S. Hoosain Z. Archary M. Bhorat Q. Fairlie L. Lalloo U. Masilela MSL. Moodley D. Hanley S. et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine 2021, 0:null, doi:10.1056/NEJMoa2103055.
- Wong S-Y, Dixon R, Pazos VM, Gnjatic S, Colombel J-F, Cadwell K, Group I-IW. Serological response to mRNA COVID-19 15. vaccines in IBD patients receiving biological therapies. Gastroenterology 2021, doi:10.1053/j.gastro.2021.04.025.
- Thakkar A, Gonzalez-Lugo JD, Goradia N, Gali R, Shapiro LC, Pradhan K, Rahman S, Kim SY, Ko B, Sica RA, et al. 16. Seroconversion rates following COVID-19 vaccination amongst patients with cancer. Cancer Cell 2021:S1535610821002853, doi:10.1016/j.ccell.2021.06.002.
- Palich R, Veyri M, Marot S, Vozy A, Gligorov J, Maingon P, Marcelin AG, Spano JP. Weak immunogenicity after a single dose 17. of SARS-CoV-2 mRNA vaccine in treated cancer patients. Annals of Oncology: Official Journal of the European Society for Medical Oncology 2021, doi:10.1016/j.annonc.2021.04.020.
- 18. Scurr MJ, Zelek WM, Lippiatt G, Somerville M, Burnell SEA, Capitani L, Davies K, Lawton H, Tozer T, Rees T, et al. Whole blood-based measurement of SARS-CoV-2-specific T cell responses reveals asymptomatic infection and vaccine efficacy in healthy subjects and patients with solid organ cancers. medRxiv 2021:2021.2006.2002.21258218, doi:10.1101/2021.06.02.21258218.
- 19. Nadesalingam A. Cantoni D. Wells DA. Aguinam ET. Ferrari M. Smith P. Chan A. Carnell G. Ohlendorf L. Einhauser S. et al. Breadth of neutralising antibody responses to SARS-CoV-2 variants of concern is augmented by vaccination following prior

Strategy for Patient-Oriented Research

infection: studies in UK healthcare workers and immunodeficient patients. *medRxiv* 2021:2021.2006.2003.21257901, doi:10.1101/2021.06.03.21257901.

- 20. Miele M, Busà R, Russelli G, Sorrentino MC, Bella MD, Timoneri F, Mularoni A, Panarello G, Vitulo P, Conaldi PG, et al. Impaired anti-SARS-CoV-2 Humoral and Cellular Immune Response induced by Pfizer-BioNTech BNT162b2 mRNA Vaccine in Solid Organ Transplanted Patients. *American Journal of Transplantation* 2021, n/a, doi:https://doi.org/10.1111/ajt.16702.
- 21. Capetti AF, Borgonovo F, Mileto D, Gagliardi G, Mariani C, Lupo A, Dedivitiis G, Meraviglia P, Pellicciotta M, Armiento L, et al. One-year durability of anti-spike IgG to SARS-CoV-2: preliminary data from the AntiCROWN prospective observational study One year durability of COVID-19 anti-spike IgG. *Journal of Infection* 2021, 0, doi:10.1016/j.jinf.2021.05.023.
- 22. Cucchiari D, Egri N, Bodro M, Herrera S, Risco-Zevallos JD, Casals-Urquiza J, Cofan F, Moreno A, Rovira J, Banon-Maneus E, et al. Cellular and humoral response after mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients. *American Journal of Transplantation* 2021, n/a, doi:https://doi.org/10.1111/ajt.16701.
- Ruddy JA, Connolly CM, Boyarsky BJ, Werbel WA, Christopher-Stine L, Garonzik-Wang J, Segev DL, Paik JJ. High antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in patients with rheumatic and musculoskeletal diseases. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220656.
- 24. Chan L, Fuca N, Zeldis E, Campbell K, Shaikh A. Antibody Response to mRNA-1273 SARS-CoV-2 Vaccine in Hemodialysis Patients with and without Prior COVID-19. *Clinical Journal of the American Society of Nephrology* 2021, doi:10.2215/CJN.04080321.
- 25. Addeo A, Shah P, Bordry N, Hudson R, Albracht B, Marco MD, Kaklamani V, Dietrich P-Y, Taylor B, Simand P-F, et al. Immunogenicity of SARS-CoV-2 mRNA Vaccines in Patients with Cancer: Findings from an International Collaborative Cohort Study. *Research Square* 2021, doi:10.21203/rs.3.rs-554993/v1.
- 26. Spencer EA, Klang E, Dolinger M, Pittman N, Dubinsky MC. Seroconversion following SARS-CoV-2 Infection or Vaccination in Pediatric IBD Patients. *medRxiv* 2021:2021.2005.2018.21257400, doi:10.1101/2021.05.18.21257400.
- 27. Husain SA, Tsapepas D, Paget KF, Chang J-H, Crew RJ, Dube GK, Fernandez HE, Morris HK, Mohan S, Cohen DJ. Postvaccine anti-SARS-CoV-2 spike protein antibody development in kidney transplants recipients. *Kidney International Reports* 2021, doi:10.1016/j.ekir.2021.04.017.
- 28. Thakkar A, Lugo JG, Goradia N, Gali R, Shapiro LC, Pradhan K, Rahman S, Kim SY, Ko B, Sica RA, et al. Seroconversion rates following COVID-19 vaccination amongst patients with malignant disease- the impact of diagnosis and cancer-directed therapies. *medRxiv* 2021:2021.2005.2007.21256824, doi:10.1101/2021.05.07.21256824.
- 29. Schmidt T, Klemis V, Schub D, Schneitler S, Reichert MC, Wilkens H, Sester U, Sester M, Mihm J. Cellular immunity predominates over humoral immunity after the first dose of COVID-19 vaccines in solid organ transplant recipients. *medRxiv* 2021:2021.2005.2007.21256809, doi:10.1101/2021.05.07.21256809.
- 30. Aleman A, Oekelen OV, Upadhyaya B, Agte S, Kappes K, Beach K, Srivastava K, Gleason CR, Group PVIs, Wang B, et al. Fatal breakthrough infection after anti-BCMA CAR-T therapy highlights suboptimal immune response to SARS-CoV-2 vaccination in myeloma patients. *medRxiv* 2021:2021.2005.2015.21256814, doi:10.1101/2021.05.15.21256814.
- 31. Al-Janabi A, Littlewood Z, Griffiths CEM, Hunter HJA, Chinoy H, Moriarty C, Yiu ZZN, Warren RB. Antibody responses to single-dose SARS-CoV-2 vaccination in patients receiving immunomodulators for immune-mediated inflammatory disease. British Journal of Dermatology 2021, n/a, doi:https://doi.org/10.1111/bjd.20479.
- 32. Anand S, Montez-Rath ME, Han J, Garcia P, Cadden L, Hunsader P, Kerschmann R, Beyer P, Dittrich M, Block GA, et al. Antibody Response to COVID-19 vaccination in Patients Receiving Dialysis. *medRxiv* 2021:2021.2005.2006.21256768, doi:10.1101/2021.05.06.21256768.
- 33. Pacifico A, d'Arino A, Pigatto PDM, Malagoli P, Damiani G. COVID-19 vaccine does not trigger psoriasis flares in psoriatic patients treated with apremilast. *Clinical and Experimental Dermatology* 2021, n/a, doi:https://doi.org/10.1111/ced.14723.
- 34. Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, Lalloo U, Masilela MSL, Moodley D, Hanley S, et al. Preliminary Efficacy of the NVX-CoV2373 Covid-19 Vaccine Against the B.1.351 Variant. *medRxiv* 2021:2021.2002.2025.21252477, doi:10.1101/2021.02.25.21252477.
- 35. Wong S-Y, Dixon R, Pazos VM, Group I-IBDW, Gnjatic S, Colombel J-F, Cadwell K. Serological response to COVID-19 vaccination in IBD patients receiving biologics. *medRxiv* 2021:2021.2003.2017.21253848, doi:10.1101/2021.03.17.21253848.
- 36. Anand S, Montez-Rath M, Han J, Garcia P, Cadden L, Hunsader P, Kerschmann R, Beyer P, Dittrich M, Block G, et al. Antibody Response to COVID-19 Vaccination in Patients Receiving Dialysis. *Journal of the American Society of Nephrology* 2021, doi:10.1681/ASN.2021050611.
- 37. Dailey J, Kozhaya L, Dogan M, Hopkins D, Lapin B, Herbst K, Brimacombe M, Grandonico K, Karabacak F, Schreiber J, et al. Antibody Responses to SARS-CoV-2 after Infection or Vaccination in Children and Young Adults with Inflammatory Bowel Disease. *medRxiv* 2021:2021.2006.2012.21258810, doi:10.1101/2021.06.12.21258810.
- Ben-Dov IZ, Oster Y, Tzukert K, Alster T, Bader R, Israeli R, Asayag H, Aharon M, Burstein I, Pri-Chen H, et al. The 5-months impact of tozinameran (BNT162b2) mRNA vaccine on kidney transplant and chronic dialysis patients. *medRxiv* 2021:2021.2006.2012.21258813, doi:10.1101/2021.06.12.21258813.
- 39. Albach FN, Burmester GR, Biesen R. Successful BNT162b2 booster vaccinations in a patient with rheumatoid arthritis and initially negative antibody response. *Ann Rheum Dis* 2021, 2021/06/26, doi:10.1136/annrheumdis-2021-220834

Strategy for Patient-Oriented Research

10.1136/annrheumdis-2021-220834.; ID: 841366.

- 40. Broseta JJ, Rodríguez-Espinosa D, Rodríguez N, Mosquera MDM, Marcos MÁ, Egri N, Pascal M, Soruco E, Bedini JL, Bayés B, et al. Humoral and Cellular Responses to mRNA-1273 and BNT162b2 SARS-CoV-2 Vaccines Administered to Hemodialysis Patients. *Am J Kidney Dis* 2021, 2021/06/27, doi:10.1053/j.ajkd.2021.06.002.
- 41. Palich R, Veyri M, Vozy A, Marot S, Gligorov J, Benderra MA, Maingon P, Morand-Joubert L, Adjoutah Z, Marcelin AG, et al. High seroconversion rate but low antibody titers after two injections of BNT162b2 (Pfizer-BioNTech) vaccine in patients treated by chemotherapy for solid cancers. *Ann Oncol* 2021, 2021/06/26, doi:10.1016/j.annonc.2021.06.018.
- 42. Zee JST, Lai KTW, Ho MKS, Leung ACP, Chan QWL, Ma ESK, Lau CC, Raymond WHY. Serological response to mRNA and inactivated COVID-19 vaccine in healthcare workers in Hong Kong: preliminary results. *HKMJ* 2021, 27, doi:https://doi.org/10.12809/hkmj219605.
- 43. Cherian S, Paul A, Ahmed S, Alias B, Manoj M, Santhosh AK, Varghese DR, Krishnan N, Shenoy P. Safety of the ChAdOx1 nCoV-19 and the BBV152 vaccines in 724 patients with rheumatic diseases: a post-vaccination cross-sectional survey. *Rheumatology International* 2021, doi:10.1007/s00296-021-04917-0.
- 44. Achiron A, Dolev M, Menascu S, Zohar D-N, Dreyer-Alster S, Miron S, Shirbint E, Magalashvili D, Flechter S, Givon U, et al. COVID-19 vaccination in patients with multiple sclerosis: What we have learnt by February 2021. *Multiple Sclerosis Journal* 2021:13524585211003476, doi:10.1177/13524585211003476.
- 45. Achiron A, Mandel M, Dreyer-Alster S, Harari G, Magalashvili D, Sonis P, Dolev M, Menascu S, Flechter S, Falb R, et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy diseasemodifying therapies. *Therapeutic Advances in Neurological Disorders* 2021, 14:17562864211012835, doi:10.1177/17562864211012835.
- 46. Addeo A, Shah PK, Bordry N, Hudson RD, Albracht B, Di Marco M, Kaklamani V, Dietrich P-Y, Taylor BS, Simand P-F, et al. Immunogenicity of SARS-CoV-2 messenger RNA Vaccines in Patients with Cancer. *Cancer Cell* 2021:S1535610821003305, doi:10.1016/j.ccell.2021.06.009.
- 47. Agha M, Blake M, Chilleo C, Wells A, Haidar G. Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients. *medRxiv* 2021:2021.2004.2006.21254949, doi:10.1101/2021.04.06.21254949.
- 48. Agrati C, Castilletti C, Sacchi A, Colavita F, Capobianchi MR, Puro V, Nicastri E, Ippolito G, Bibas M. Immunogenicity and safety of BNT162b2 COVID-19 vaccine in a chronic lymphocytic leukaemia patient. *Journal of Cellular and Molecular Medicine* 2021, n/a, doi:https://doi.org/10.1111/jcmm.16565.
- 49. Agur T, Ben-Dor N, Goldman S, Lichtenberg S, Herman-Edelstein M, Yahav D, Rozen-Zvi B, Zingerman B. Antibody response to mRNA SARS-CoV-2 vaccine among dialysis patients a prospectivecohort study. *Nephrology Dialysis Transplantation* 2021, doi:10.1093/ndt/gfab155.
- 50. Ali NM, Alnazari N, Mehta SA, Boyarsky B, Avery RK, Segev DL, Montgomery RA, Stewart ZA. Development of COVID-19 Infection in Transplant Recipients After SARS-CoV-2 Vaccination. *Transplantation* 2021, doi:10.1097/TP.000000000003836.
- 51. Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza DA, Kadri JC, et al. Altered cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. *medRxiv* 2021:2021.2006.2023.21259389, doi:10.1101/2021.06.23.21259389
- 52. Au L, Fendler A, Shepherd STC, Rzeniewicz K, Cerrone M, Byrne F, Carlyle E, Edmonds K, Del Rosario L, Shon J, et al. Cytokine release syndrome in a patient with colorectal cancer after vaccination with BNT162b2. *Nature Medicine* 2021:1-5, doi:10.1038/s41591-021-01387-6.
- 53. Barda N, Dagan N, Balicer RD. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. Reply. *The New England Journal of Medicine* 2021, 384, doi:10.1056/NEJMc2104281.
- 54. Barrière J, Chamorey E, Adjtoutah Z, Castelnau O, Mahamat A, Marco S, Petit E, Leysalle A, Raimondi V, Carles M. Impaired immunogenicity of BNT162b2 anti-SARS-CoV-2 vaccine in patients treated for solid tumors. *Annals of Oncology: Official Journal of the European Society for Medical Oncology* 2021, doi:10.1016/j.annonc.2021.04.019.
- 55. Basic-Jukic N, Jelicic I. SARS-CoV-2 infection after two doses of mRNA vaccine in renal transplant recipients. *Transplant Infectious Disease* 2021, n/a:e13628, doi:https://doi.org/10.1111/tid.13628.
- 56. Benotmane I, Gautier-Varga G, Cognard N, Olagne J, Heibel F, Braun-Parvez L, Martzloff J, Perrin P, Moulin B, Fafi-Kremer S, et al. Weak anti–Severe Acute Respiratory Syndrome Coronavirus 2 antibody response after the first injection of an mRNA Coronavirus Disease 2019 vaccine in kidney transplant recipients. *Kidney International* 2021, doi:10.1016/j.kint.2021.03.014.
- 57. Benotmane I, Gautier-Vargas G, Cognard N, Olagne J, Heibel F, Braun-Parvez L, Martzloff J, Perrin P, Moulin B, Fafi-Kremer S, et al. Low immunization rates among kidney transplant recipients who received two doses of the mRNA-1273 SARS-CoV-2 vaccine. *Kidney International* 2021, doi:10.1016/j.kint.2021.04.005.
- 58. Bertrand D, Hamzaoui M, Lemée V, Lamulle J, Hanoy M, Laurent C, Lebourg L, Etienne I, Lemoine M, Roy FL, et al. Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients. *Journal of the American Society of Nephrology* 2021, doi:10.1681/ASN.2021040480.
- 59. Bigaut K, Kremer L, Fleury M, Lanotte L, Collongues N, e Seze J. Impact of disease-modifying treatments on humoral response after COVID-19 vaccination: A mirror of the response after SARS-CoV-2 infection. *Revue neurologique* 2021, doi:10.1016/j.neurol.2021.05.001.

Strategy for Patient-Oriented Research

- 60. Bird S, Panopoulou A, Shea RL, Tsui M, Saso R, Sud A, West S, Barwood J, Kaczmarek E, Panlaqui C, et al. Response to first vaccination against SARS-CoV-2 in patients with multiple myeloma. *The Lancet Haematology* 2021, doi:10.1016/S2352-3026(21)00110-1.
- 61. Boekel L, Steenhuis M, Hooijberg F, Besten Y, van Kempen Z, Kummer L, van Dam K, Stalman E, Vogelzang E, Christianawati O, et al. Antibody Development after SARS-CoV-2 Vaccinations in Elderly Patients with Autoimmune Diseases: Data From a Prospective Controlled Cohort Study. SSRN- Lancet prepublication 2021.
- 62. Bonelli MM, Mrak D, Perkmann T, Haslacher H, Áletaha D. SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220408.
- 63. Botwin GJ, Li D, Figueiredo J, Cheng S, Braun J, McGovern DPB, Melmed GY. Adverse Events After SARS-CoV-2 mRNA Vaccination Among Patients With Inflammatory Bowel Disease. *American Journal of Gastroenterology* 2021, Publish Ahead of Print, doi:10.14309/ajg.00000000001342.
- 64. Botwin G, Li D, Figueiredo J, Cheng S, Braun J, McGovern DPB, Melmed G. Adverse Events Following SARS-CoV-2 mRNA Vaccination Among Patients with Inflammatory Bowel Disease. *medRxiv* 2021:2021.2003.2030.21254607, doi:10.1101/2021.03.30.21254607.
- 65. Boyarsky BJ, Chiang TPY, Ou MT, Werbel WA, Massie AB, Segev DL, Garonzik-Wang JM. Antibody Response to the Janssen COVID-19 Vaccine in Solid Organ Transplant Recipients. *Transplantation* 2021, doi:10.1097/TP.00000000003850.
- Boyarsky BJ, Ou MT, Greenberg RS, Teles AT, Werbel WA, Avery RK, Massie AB, Segev DL, Garonzik-Wang JM. Safety of the First Dose of SARS-CoV-2 Vaccination in Solid Organ Transplant Recipients. *Transplantation* 2021, doi:10.1097/TP.00000000003654.
- 67. Boyarsky BJ, Ruddy JA, Connolly CM, Ou MT, Werbel WA, Garonzik-Wang JM, Segev DL, Paik JJ. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220289.
- Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, Garonzik-Wang JM. Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients. JAMA 2021, doi:10.1001/jama.2021.4385.
- 69. Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, Garonzik-Wang JM. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. *JAMA* 2021, doi:10.1001/jama.2021.7489.
- 70. Braun-Moscovici Y, Kaplan M, Markovits D, Giryes S, Toledano K, Tavor Y, Dolnikov K, Balbir-Gurman A. Humoral response to Pfizer mRNA vaccine against SARS CoV2, in patients with autoimmune inflammatory rheumatic diseases and the impact on the rheumatic disease activity. *medRxiv* 2021:2021.2004.2002.21254493, doi:10.1101/2021.04.02.21254493.
- 71. Braun-Moscovici Y, Kaplan M, Braun M, Markovits D, Giryes S, Toledano K, Tavor Y, Dolnikov K, Balbir-Gurman A. Disease activity and humoral response in patients with inflammatory rheumatic diseases after two doses of the Pfizer mRNA vaccine against SARS-CoV-2. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220503.
- 72. Buttari F, Bruno A, Dolcetti E, Azzolini F, Bellantonio P, Centonze D, Fantozzi R. COVID-19 vaccines in multiple sclerosis treated with cladribine or ocrelizumab. *Multiple Sclerosis and Related Disorders* 2021, 52:102983, doi:10.1016/j.msard.2021.102983.
- 73. Caillard S, Chavarot N, Bertrand D, Kamar N, Thaunat O, Moal V, Masset C, Hazzan M, Gatault P, Sicard A, et al. Occurrence of severe Covid-19 in vaccinated transplant patients. *Kidney International* 2021, doi:10.1016/j.kint.2021.05.011.
- 74. Ceccarelli F, Olivieri G, Natalucci F, Alessandri C, Conti F. SARS-CoV-2 vaccination efficacy and B-cell depletion therapy in systemic lupus erythematosus: Description of a case. *Lupus* 2021, 2021/07/02:9612033211027940, doi:10.1177/09612033211027940.
- 75. Chavarot N, Ouedrani A, Marion O, Leruez-Ville M, Villain E, Baaziz M, Del Bello A, Burger C, Sberro-Soussan R, Martinez F, et al. Poor Anti-SARS-CoV-2 Humoral and T-cell Responses After 2 Injections of mRNA Vaccine in Kidney Transplant Recipients Treated with Belatacept. *Transplantation* 2021, doi:10.1097/TP.00000000003784.
- 76. Chilimuri S, Mantri N, Gongati S, Zahid M, Sun H. COVID-19 Vaccine Failure in a Patient with Multiple Sclerosis on Ocrelizumab. *Vaccines* 2021, 9:219, doi:10.3390/vaccines9030219.
- 77. Chodick G, Tene L, Patalon T, Gazit S, Ben Tov A, Cohen D, Muhsen K. Assessment of Effectiveness of 1 Dose of BNT162b2 Vaccine for SARS-CoV-2 Infection 13 to 24 Days After Immunization. JAMA network open 2021, 4:e2115985, doi:10.1001/jamanetworkopen.2021.15985.
- 78. Chodick G, Tene L, Rotem RS, Patalon T, Gazit S, Ben-Tov A, Weil C, Goldshtein I, Twig G, Cohen D, et al. The effectiveness of the TWO-DOSE BNT162b2 vaccine: analysis of real-world data. *Clinical Infectious Diseases* 2021, doi:10.1093/cid/ciab438.
- 79. Cohen D, Hazut Krauthammer S, Cohen YC, Perry C, Avivi I, Herishanu Y, Even-Sapir E. Correlation between BNT162b2 mRNA Covid-19 vaccine-associated hypermetabolic lymphadenopathy and humoral immunity in patients with hematologic malignancy. *European Journal of Nuclear Medicine and Molecular Imaging* 2021, doi:10.1007/s00259-021-05389-x.
- 80. Cohen D, Krauthammer SH, Cohen YC, Perry C, Avivi I, Herishanu Y, Even-Sapir E. Correlation Between BNT162b2 mRNA Covid-19 Vaccine-associated Hypermetabolic Lymphadenopathy and Humoral Immunity in Patients With Hematologic Malignancy. *Research Square* 2021, doi:10.21203/rs.3.rs-395288/v1.

Strategy for Patient-Oriented Research

- 81. Cohen D, Krauthammer SH, Wolf I, Even-Sapir E. Hypermetabolic lymphadenopathy following administration of BNT162b2 mRNA Covid-19 vaccine: incidence assessed by [18F]FDG PET-CT and relevance to study interpretation. *European Journal of Nuclear Medicine and Molecular Imaging* 2021, doi:10.1007/s00259-021-05314-2.
- 82. Connolly CM, Ruddy JA, Boyarsky BJ, Ävery RK, Werbel WA, Segev DL, Garonzik-Wang J, Paik JJ. Safety of the first dose of mRNA SARS-CoV-2 vaccines in patients with rheumatic and musculoskeletal diseases. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220231.
- 83. Damiani G, Allocco F, Malagoli P. COVID-19 vaccination and patients with psoriasis under biologics: real-life evidence on safety and effectiveness from Italian vaccinated healthcare workers. *Clinical and Experimental Dermatology* 2021, n/a, doi:https://doi.org/10.1111/ced.14631.
- 84. Danthu C, Hantz S, Dahlem A, Duval M, Ba B, Guibbert M, Ouafi ZE, Ponsard S, Berrahal I, Achard JM, et al. Humoral Response after SARS-Cov-2 mRNA Vaccine in a Cohort of Hemodialysis Patients and Kidney Transplant Recipients. *Journal of the American Society of Nephrology* 2021, doi:10.1681/ASN.2021040490.
- 85. Deepak P, Kim W, Paley MA, Yang M, Carvidi AB, El-Qunni AA, Haile A, Huang K, Kinnett B, Liebeskind MJ, et al. Glucocorticoids and B Cell Depleting Agents Substantially Impair Immunogenicity of mRNA Vaccines to SARS-CoV-2. *medRxiv* 2021:2021.2004.2005.21254656, doi:10.1101/2021.04.05.21254656.
- 86. Del Bello A, Marion O, Delas A, Congy-Jolivet N, Colombat M, Kamar N. Acute rejection after anti-SARS-CoV-2 mRNA vaccination in a patient who underwent a kidney transplant. *Kidney International* 2021, doi:10.1016/j.kint.2021.04.025.
- 87. Diefenbach C, Caro J, Koide A, Grossbard M, Goldberg JD, Raphael B, Hymes K, Moskovits T, Kreditor M, Kaminetzky D, et al. Impaired Humoral Immunity to SARS-CoV-2 Vaccination in Non-Hodgkin Lymphoma and CLL Patients. *medRxiv* 2021:2021.2006.2002.21257804, doi:10.1101/2021.06.02.21257804.
- 88. Dolff S, Baotong Z, Korth J, De L, Yang D, Jahn M, Dorsch O, Anastasiou OE, Witzke O, Kribben A, et al. Evidence of Cell Mediated Immune response in kidney transplants with negative mRNA-1273 Antibody Response. *Kidney International* 2021, doi:10.1016/j.kint.2021.05.013.
- 89. Donadio C, Rainone A, Gouronnec A, Belmin J, Lafuente –Lafuente C. Asymptomatic COVID-19 cases among older patients despite BNT162b2 vaccination: a case series in a geriatric rehabilitation ward during an outbreak. *The Journal of Infection* 2021, doi:10.1016/j.jinf.2021.04.004.
- 90. Duarte R, Roldão M, Figueiredo C, Ferrer F, Gonçalves H, Luz I, Sofia F, Lopes K. Humoral Response to BNT162b2 mRNA Covid19 Vaccine in Peritoneal and Hemodialysis Patients: a Comparative Study. *medRxiv* 2021:2021.2006.2014.21258113, doi:10.1101/2021.06.14.21258113.
- 91. Ducloux D, Colladant M, Chabannes M, Yannaraki M, Courivaud C. Humoral response after three doses of BNT162b2 mRNA COVID-19 vaccine in patients on hemodialysis. *Kidney Int* 2021, 2021/07/04, doi:10.1016/j.kint.2021.06.025.
- 92. Edler, et al. Deaths associated with newly launched SARS-CoV-2 vaccination (Comirnaty®). Legal Medicine 2021, 51:101895, doi:10.1016/j.legalmed.2021.101895.
- 93. Eifer M, Tau N, Alhoubani Y, Kanana N, Domachevsky L, Shams J, Keret N, Gorfine M, Eshet Y. Covid-19 mRNA Vaccination: Age and Immune Status and its Association with Axillary Lymph Node PET/CT Uptake. *Journal of Nuclear Medicine* 2021, doi:10.2967/jnumed.121.262194.
- 94. Salinas AF, Mortari EP, Terreri S, Quintarelli C, Pulvirenti F, Cecca SD, Guercio M, Milito C, Bonanni L, Auria S, et al. SARS-CoV-2 Vaccine Induced Atypical Immune Responses in Antibody Defects: everybody does their best. *medRxiv* 2021:2021.2006.2024.21259130, doi:10.1101/2021.06.24.21259130.
- 95. Firket L, Descy J, Seidel L, Bonvoisin C, Bouquegneau A, Grosch S, Jouret F, Weekers L. Serological response to mRNA SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients depends on prior exposure to SARS-CoV-2. *American Journal of Transplantation* 2021, n/a, doi:https://doi.org/10.1111/ajt.16726.
- 96. Francis Crick I, King's College L. Delaying second Pfizer-BioNTech dose could leave cancer patients with insufficient immunity. 2021.
- 97. Frantzen L, Cavaille G, Thibeaut S, El-Haik Y. Efficacy of the BNT162b2 mRNA Covid-19 Vaccine in a hemodialysis cohort. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 2021, doi:10.1093/ndt/gfab165.
- 98. Frater J, Ewer K, Ogbe A, Pace M, Adele S, Adland E, Alagaratnam J, Aley PK, Ali M, Ansari MA, et al. Safety and Immunogenicity of the ChAdox1 nCoV-19 (AZD1222) Vaccine Against SARS-CoV-2 in HIV Infection. SSRN Preprints 2021.
- 99. Frater J, Ewer KJ, Ogbe A, Pace M, Adele S, Adland E, Alagaratnam J, Aley PK, Ali M, Ansari MA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial. *The Lancet HIV* 2021:S235230182100103X, doi:10.1016/S2352-3018(21)00103-X.
- 100. Furer V, Eviatar T, Zisman D, Peleg H, Paran D, Levartovsky D, Zisapel M, Elalouf O, Kaufman I, Meidan R, et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220647.

- Furer V, Zisman D, Kibari A, Rimar D, Paran Y, Elkayam O. Herpes zoster following BNT162b2 mRNA Covid-19 vaccination in 101. patients with autoimmune inflammatory rheumatic diseases: a case series. Rheumatology (Oxford, England) 2021, doi:10.1093/rheumatology/keab345.
- 102. Gallo A, Capuano R, Donnarumma G, Bisecco A, Grimaldi E, Conte M, d'Ambrosio A, Coppola N, Galdiero M, Tedeschi G. Preliminary evidence of blunted humoral response to SARS-CoV-2 mRNA vaccine in multiple sclerosis patients treated with ocrelizumab. Neurological Sciences 2021, doi:10.1007/s10072-021-05397-7.
- García JB, Ortega PP, Antonio Bonilla Fernández J, León AC, Burgos LR, Dorta EC. [Acute myocarditis after administration of 103. the BNT162b2 vaccine against COVID-19]. Revista Espanola De Cardiologia 2021, doi:10.1016/j.recesp.2021.03.009.
- 104. Geisen UM, Berner DK, Tran F, Sümbül M, Vullriede L, Ciripoi M, Reid HM, Schaffarzyk A, Longardt AC, Franzenburg J, et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort. Annals of the Rheumatic Diseases 2021, doi:10.1136/annrheumdis-2021-220272.
- 105. Ghione P, Gu JJ, Attwood K, Torka P, Goel S, Sundaram S, Mavis C, Johnson M, Thomas R, McWhite KM, et al. Impaired humoral responses to COVID-19 vaccination in patients with lymphoma receiving B-cell directed therapies. Blood 2021, 2021/07/01, doi:10.1182/blood.2021012443.
- Goupil R, Benlarbi M, Beaubien-Souligny W, Nadeau-Fredette A-C, Chatterjee D, Goyette G, Gunaratnam L, Lamarche C, 106. Tom A, Finzi A, et al. Short-term antibody response afer 1 dose of BNT162b2 vaccine in patients receiving hemodialysis. CMAJ 2021, doi:10.1503/cmaj.210673.
- Grupper A, Rabinowich L, Schwartz D, Schwartz IF, Ben-Yehoyada M, Shashar M, Katchman E, Halperin T, Turner D, 107. Govkhman Y, et al. Reduced humoral response to mRNA SARS-Cov-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus, American Journal of Transplantation 2021, n/a. doi:https://doi.org/10.1111/ait.16615.
- 108. Grupper A. Sharon N. Finn T. Cohen R. Israel M. Adbaria A. Rechavi Y. Schwartz IF. Schwartz D. Lellouch Y. et al. Humoral Response to the Pfizer BNT162b2 Vaccine in Patients Undergoing Maintenance Hemodialysis. Clinical Journal of the American Society of Nephrology 2021, doi:10.2215/CJN.03500321.
- Guerrieri S, S L, C Z, A N, M F, L M. Serological response to SARS-CoV-2 vaccination in multiple sclerosis patients treated 109. with fingolimod or ocrelizumab: an initial real-life experience. J Neurol 2021, 2021/07/01:1-5, doi:10.1007/s00415-021-10663х.
- 110. Haberman RH, Herati RS, Simon D, Samanovic M, Blank RB, Tuen M, Koralov SB, Atreya R, Tascilar K, Allen JR, et al. Methotrexate Hampers Immunogenicity to BNT162b2 mRNA COVID-19 Vaccine in Immune-Mediated Inflammatory Disease. medRxiv 2021:2021.2005.2011.21256917, doi:10.1101/2021.05.11.21256917.
- 111. Haberman RH, Herati R, Simon D, Samanovic M, Blank RB, Tuen M, Koralov S, Atreya R, Tascilar K, Allen J, et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Annals of the Rheumatic Diseases 2021, doi:10.1136/annrheumdis-2021-220597.
- 112. Hadi YB, Thakkar S, Shah-Khan SM, Hutson W, Sarwari A, Singh S. COVID-19 vaccination is safe and effective in patients with inflammatory bowel disease: Analysis of a large multi-institutional research network in United States. Gastroenterology 2021, doi:10.1053/j.gastro.2021.06.014.
- 113. Hagin D, Freund T, Navon M, Halperin T, Adir D, Marom R, Levi I, Benor S, Alcalay Y, Freund NT. Immunogenicity of Pfizer-BioNTech COVID-19 Vaccine in Patients with Inborn Errors of Immunity. The Journal of Allergy and Clinical Immunology 2021, doi:10.1016/j.jaci.2021.05.029.
- Haidar G, Agha M, Lukanski A, Linstrum K, Troyan R, Bilderback A, Rothenberger S, McMahon DK, Crandall M, Enick PN, et 114. al. Immunogenicity of COVID-19 Vaccination in Immunocompromised Patients: An Observational, Prospective Cohort Study Interim Analysis. medRxiv 2021:2021.2006.2028.21259576, doi:10.1101/2021.06.28.21259576
- 115. Harrington P, Doores KJ, Radia D, O'Reilly A, Lam HPJ, Seow J, Graham C, Lechmere T, McLornan D, Dillon R, et al. Single dose of BNT162b2 mRNA vaccine against SARS-CoV2 induces neutralizing antibody and polyfunctional T-cell responses in patients with CML. medRxiv 2021:2021.2004.2015.21255482, doi:10.1101/2021.04.15.21255482.
- Harrington P, Lavallade Hd, Doores K, O'Reilly A, Seow J, Graham C, Lechmere T, Radia D, Dillon R, Shanmugharaj Y, et al. 116. Single dose of BNT162b2 mRNA vaccine against SARS-CoV-2 induces high frequency of neutralising antibody and polyfunctional T-cell responses in patients with myeloproliferative neoplasms. medRxiv 2021:2021.2004.2027.21256096, doi:10.1101/2021.04.27.21256096.
- Harrington P, de Lavallade H, Doores KJ, O'Reilly A, Seow J, Graham C, Lechmere T, Radia D, Dillon R, Shanmugharaj Y, et 117. al. Single dose of BNT162b2 mRNA vaccine against SARS-CoV-2 induces high frequency of neutralising antibody and polyfunctional T-cell responses in patients with myeloproliferative neoplasms. Leukemia 2021:1-5, doi:10.1038/s41375-021-01300-7.
- Harrington P, Doores KJ, Radia D, O'Reilly A, Lam HPJ, Seow J, Graham C, Lechmere T, McLornan D, Dillon R, et al. Single 118. dose of BNT162b2 mRNA vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces neutralising antibody and polyfunctional T-cell responses in patients with chronic myeloid leukaemia. British Journal of Haematology 2021, n/a, doi:https://doi.org/10.1111/bih.17568.

- Havlin J, Svorcova M, Dvorackova E, Lastovicka J, Lischke R, Kalina T, Hubacek P. Immunogenicity of BNT162b2 mRNA 119. COVID-19 vaccine and SARS-CoV-2 infection in lung transplant recipients. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation 2021, doi:10.1016/j.healun.2021.05.004.
- 120. Herishanu Y, Avivi I, Aharon A, Shefer G, Levi S, Bronstein Y, Morales Moshiashvili M, Ziv-Baran T, Shorer Y, Scarfo L, et al. Efficacy of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Chronic Lymphocytic Leukemia. Blood 2021, doi:10.1182/blood.2021011568.
- Itzhaki Ben Zadok O, Shaul AA, Ben-Avraham B, Yaari V, Zvi HB, Shostak Y, Pertzov B, Eliakim-Raz N, Abed G, Abuhazira 121. M, et al. Immunogenicity of the BNT162b2 mRNA Vaccine in Heart Transplanted Patients-A Prospective Cohort Study. European Journal of Heart Failure 2021, n/a, doi:https://doi.org/10.1002/ejhf.2199.
- 122. Jahn M, Korth J, Dorsch O, Anastasiou OE, Sorge-Hädicke B, Tyczynski B, Gäckler A, Witzke O, Dittmer U, Dolff S, et al. Humoral Response to SARS-CoV-2-Vaccination with BNT162b2 (Pfizer-BioNTech) in Patients on Hemodialysis. Vaccines 2021, 9:360, doi:10.3390/vaccines9040360.
- Jalali VA, Scherzer S, Zeitlinger M. Improved immunogenicity against SARS-CoV-2 in a solid organ transplant recipient by 123. switching vaccines. Clin Microbiol Infect 2021, 2021/07/01, doi:10.1016/j.cmi.2021.06.022.
- Kamar N, Abravanel F, Marion O, Couat C, Izopet J, Bello AD. Three Doses of an mRNA Covid-19 Vaccine in Solid-Organ 124. Transplant Recipients. New England Journal of Medicine 2021, doi:10.1056/NEJMc2108861.
- 125. Kennedy NA, Lin S, Goodhand JR, Chanchlani N, Hamilton B, Bewshea C, Nice R, Chee D, Cummings JRF, Fraser A, et al. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines. medRxiv 2021:2021.2003.2025.21254335, doi:10.1101/2021.03.25.21254335.
- 126. Keshavarz P, Yazdanpanah F, Rafiee F, Mizandari M. Lymphadenopathy Following COVID-19 Vaccination: Imaging Findings Review. Academic Radiology 2021. doi:10.1016/i.acra.2021.04.007.
- 127. Khayat-Khoei M, Conway S, Rubinson DA, Jarolim P, Houtchens MK. Negative Anti-SARS-CoV-2 S Antibody Response Following Pfizer SARS-CoV-2 Vaccination in a Patient on Ocrelizumab. Research Square 2021, doi:10.21203/rs.3.rs-236051/v1.
- Khayat-Khoei M, Conway S, Rubinson DA, Jarolim P, Houtchens MK. Negative anti-SARS-CoV-2 S antibody response 128. following Pfizer SARS-CoV-2 vaccination in a patient on ocrelizumab. Journal of Neurology 2021, doi:10.1007/s00415-021-10463-3.
- 129. Konstantinidis TG, Zisaki S, Mitroulis I, Konstantinidou E, Kontekaki EG, Romanidou G, Karvelas A, Nanousi I, Lazidis L, Cassimos D, et al. Levels of Produced Antibodies after Vaccination with mRNA Vaccine; Effect of Previous Infection with SARS-CoV-2. J Clin Med Please note: Preprint on April 9 2021, 10,2021/07/03, doi:10.3390/jcm10132842.
- 130. Korth J, Jahn M, Dorsch O, Anastasiou OE, Sorge-Hädicke B, Eisenberger U, Gäckler A, Dittmer U, Witzke O, Wilde B, et al. Impaired Humoral Response in Renal Transplant Recipients to SARS-CoV-2 Vaccination with BNT162b2 (Pfizer-BioNTech). Viruses 2021, 13:756, doi:10.3390/v13050756.
- 131. Lesny P, Anderson M, Cloherty G, Stec M, Haase-Fielitz A, Haarhaus M, Santos C, Lucas C, Macario F, Haase M. Immunogenicity of a first dose of mRNA- or vector-based SARS-CoV-2 vaccination in dialysis patients: a multicenter prospective observational pilot study. Journal of Nephrology 2021, doi:10.1007/s40620-021-01076-0.
- 132. Levy I, Wieder-Finesod A, Litchevski V, Biber A, Indenbaum V, Olmer L, Huppert A, Mor O, Goldstein M, Sapir E, et al. Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in People Living with HIV-1. SSRN Preprint 2021.
- Lim SH, Campbell N, Johnson M, Joseph-Pietras D, Collins GP, O'Callaghan A, Fox CP, Ahearne M, Johnson PWM, Goldblatt 133. D, et al. Antibody Responses after SARS-CoV-2 Vaccination in Lymphoma. medRxiv 2021:2021.2006.2005.21258311, doi:10.1101/2021.06.05.21258311.
- 134. Lim SH, Campbell N, Johnson M, Joseph-Pietras D, Collins GP, O'Callaghan A, Fox CP, Ahearne M, Johnson PWM, Goldblatt D, et al. Antibody responses after SARS-CoV-2 vaccination in patients with lymphoma. The Lancet Haematology - Preprint June 15 2021, doi:10.1016/S2352-3026(21)00199-X.
- 135. Longlune N, Nogier MB, Miedougé M, Gabilan C, Cartou C, Seigneuric B, Del Bello A, Marion O, Faguer S, Izopet J, et al. High immunogenicity of a messenger RNA based vaccine against SARS-CoV-2 in chronic dialysis patients. Nephrology Dialvsis Transplantation 2021, doi:10.1093/ndt/gfab193.
- Lustig Y, Sapir E, Regev-Yochay G, Cohen C, Fluss R, Olmer L, Indenbaum V, Mandelboim M, Doolman R, Amit S, et al. 136. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. The Lancet Respiratory Medicine 2021, 0, doi:10.1016/S2213-2600(21)00220-4.
- Maneikis K, Šablauskas K, Ringelevičiūtė U, Vaitekėnaitė V, Čekauskienė R, Kryžauskaitė L, Naumovas D, Banys V, 137. Pečeliūnas V, Beinortas T, et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: a national prospective cohort study. The Lancet Haematology -Preprint on May 6 2021, 0, doi:10.1016/S2352-3026(21)00169-1.
- Marinaki S, Adamopoulos S, Degiannis D, Roussos S, Pavlopoulou ID, Hatzakis A, Boletis IN. Immunogenicity of SARS-CoV-138. 2 BNT162b2 vaccine in solid organ transplant recipients. American Journal of Transplantation 2021, n/a, doi:https://doi.org/10.1111/ajt.16607.

- 139. Marion O, Del Bello A, Abravanel F, Couat C, Faguer S, Esposito L, Hebral AL, Izopet J, Kamar N. Safety and Immunogenicity of Anti–SARS-CoV-2 Messenger RNA Vaccines in Recipients of Solid Organ Transplants. *Annals of Internal Medicine* 2021, doi:10.7326/M21-1341.
- 140. Massarweh A, Eliakim-Raz N, Stemmer A, Levy-Barda A, Yust-Katz S, Zer A, Benouaich-Amiel A, Ben-Zvi H, Moskovits N, Brenner B, et al. Evaluation of Seropositivity Following BNT162b2 Messenger RNA Vaccination for SARS-CoV-2 in Patients Undergoing Treatment for Cancer. *JAMA oncology* 2021, doi:10.1001/jamaoncol.2021.2155.
- 141. Mazzola A, Todesco E, Drouin S, Hazan F, Marot S, Thabut D, Varnous S, Soulié C, Barrou B, Marcelin A-G, et al. Poor Antibody Response after Two Doses of SARS-CoV-2 vaccine in Transplant Recipients. *Clinical Infectious Diseases* 2021, doi:10.1093/cid/ciab580.
- 142. Mitsunaga T, Ohtaki Y, Seki Y, Yoshioka M, Mori H, Suzuka M, Mashiko S, Takeda S, Mashiko K. The evaluation of factors affecting antibody response after administration of the BNT162b2 vaccine: A prospective study in Japan. *medRxiv* 2021:2021.2006.2020.21259177, doi:10.1101/2021.06.20.21259177.
- 143. Monin L, Laing AG, Muñoz-Ruiz M, McKenzie DR, Barrio IdMd, Alaguthurai T, Domingo-Vila C, Hayday TS, Graham C, Seow J, et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. *The Lancet Oncology* 2021, 0, doi:10.1016/S1470-2045(21)00213-8.
- Montoya JG, Adams AE, Bonetti V, Deng S, Link NA, Pertsch S, Olson K, Li M, Dillon EC, Frosch DL. Differences in IgG antibody responses following BNT162b2 and mRNA-1273 Vaccines. *bioRxiv* 2021:2021.2006.2018.449086, doi:10.1101/2021.06.18.449086.
- 145. Monzó JJB, Rodríguez-Espinosa D, Soruco E, Maduell F. Weekly seroconversion rate of the mRNA-1273 SARS-CoV-2 vaccine in hemodialysis patients. *Nephrology Dialysis Transplantation* 2021, doi:10.1093/ndt/gfab195.
- 146. Nadesalingam A, Cantoni D, Wells DA, Aguinam ET, Ferrari M, Smith P, Chan A, Carnell G, Ohlendorf L, Einhauser S, et al. Paucity and discordance of neutralising antibody responses to SARS-CoV-2 VOCs in vaccinated immunodeficient patients and health-care workers in the UK. *The Lancet Microbe* 2021, doi:10.1016/S2666-5247(21)00157-9.
- 147. Narasimhan M, Mahimainathan L, Clark AE, Usmani A, Cao J, Araj E, Torres F, Sarode R, Kaza V, Lacelle C, et al. Serological Response in Lung Transplant Recipients after Two Doses of SARS-CoV-2 mRNA Vaccines. *medRxiv* 2021:2021.2004.2026.21255926, doi:10.1101/2021.04.26.21255926.
- 148. Narasimhan M, Mahimainathan L, Clark AE, Usmani A, Cao J, Araj E, Torres F, Sarode R, Kaza V, Lacelle C, et al. Serological Response in Lung Transplant Recipients after Two Doses of SARS-CoV-2 mRNA Vaccines. *Vaccines (Basel) Please note: Preprint on May* 6 2021, 9,2021/07/03, doi:10.3390/vaccines9070708.
- 149. Nawimana S, Lavery MJ, Parslew R, Stewart L. A flare of pre-existing erythema multiforme post BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. *Clinical and Experimental Dermatology* 2021, n/a, doi:https://doi.org/10.1111/ced.14714.
- 150. Basic-Jukic N. Clinical consequences of the suboptimal effect of messenger RNA (mRNA)-based SARS-CoV-2 vaccine in renal transplant recipients. *Therapeutic Apheresis and Dialysis* 2021, n/a, doi:https://doi.org/10.1111/1744-9987.13695.
- 151. Oekelen OV, Gleason CR, Agte S, Srivastava K, Beach K, Aleman A, Kappes K, Mouhieddine TH, Wang B, Chari A, et al. Highly variable SARS-CoV-2 spike antibody responses to two doses of COVID-19 RNA vaccination in patients with multiple myeloma. *Cancer Cell* 2021, 0, doi:10.1016/j.ccell.2021.06.014
- 152. Ogbebor O, Seth H, Min Z, Bhanot N. Guillain-Barré syndrome following the first dose of SARS-CoV-2 vaccine: A temporal occurrence, not a causal association. *IDCases* 2021, 24:e01143, doi:10.1016/j.idcr.2021.e01143.
- 153. Parry HM, McIlroy G, Bruton R, Ali M, Stephens C, Damery S, Otter A, McSkeane T, Rolfe H, Faustini S, et al. Antibody Responses After First and Second COVID-19 Vaccination in Patients With Chronic Lymphocytic Leukaemia. SSRN Preprints 2021.
- 154. Peled Y, Ram E, Lavee J, Sternik L, Segev A, Wieder-Finesod A, Mandelboim M, Indenbaum V, Levy I, Raanani E, et al. BNT162b2 vaccination in heart transplant recipients: Clinical experience and antibody response. *The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation* 2021, doi:10.1016/j.healun.2021.04.003.
- 155. Petersen RM, Tornby DS, Bistrup C, Johansen IS, Andersen TE, Justesen US. Negative SARS-cov-2 antibodies, T-cell response and virus neutralisation following full vaccination in a renal transplant recipient A call for vigilance. *Clinical Microbiology and Infection* 2021, 0, doi:10.1016/j.cmi.2021.05.042.
- 156. Pimpinelli F, Marchesi F, Piaggio G, Giannarelli D, Papa E, Falcucci P, Pontone M, Di Martino S, Laquintana V, La Malfa A, et al. Fifth-week immunogenicity and safety of anti-SARS-CoV-2 BNT162b2 vaccine in patients with multiple myeloma and myeloproliferative malignancies on active treatment: preliminary data from a single institution. *Journal of Hematology & Oncology* 2021, 14:81, doi:10.1186/s13045-021-01090-6.
- 157. Rabinowich L, Grupper A, Baruch R, Ben-Yehoyada M, Halperin T, Turner D, Katchman E, Levi S, Houri I, Lubezky N, et al. Low immunogenicity to SARS-CoV-2 vaccination among liver transplant recipients. *Journal of Hepatology* 2021, doi:10.1016/j.jhep.2021.04.020.
- 158. Ram R, Hagin D, Kikozashvilli N, Freund T, Amit O, Bar-On Y, Beyar-Katz O, Shefer G, Moshiashvili MM, Karni C, et al. Safety and Immunogenicity of the BNT162b2 mRNA Covid-19 Vaccine in Patients after Allogeneic HCT or CD19-based CART therapy - a Single Center Prospective Cohort Study. *Transplant Cell Ther* 2021, 2021/07/03, doi:10.1016/j.jtct.2021.06.024.

Strategy for Patient-Oriented Research

- 159. Riad A, Pokorná A, Mekhemar M, Conrad J, Klugarová J, Koščík M, Klugar M, Attia S. Safety of chadox1 ncov-19 vaccine: Independent evidence from two eu states. *Vaccines* 2021, 9, doi:10.3390/vaccines9060673.
- 160. Rimar D, Slobodin G, Paz A, Henig I, Zuckerman T. SARS-COV-2 vaccination after stem cell transplantation for scleroderma. Annals of the Rheumatic Diseases 2021, doi:10.1136/annrheumdis-2021-220677.
- 161. Rincon-Arevalo H, Choi M, Stefanski A-L, Halleck F, Weber U, Szelinski F, Jahrsdörfer B, Schrezenmeier H, Ludwig C, Sattler A, et al. Impaired antigen-specific memory B cell and plasma cell responses including lack of specific IgG upon SARS-CoV-2 BNT162b2 vaccination among Kidney Transplant and Dialysis patients. *medRxiv* 2021:2021.2004.2015.21255550, doi:10.1101/2021.04.15.21255550.
- 162. Rincon-Arevalo H, Choi M, Stefanski A-L, Halleck F, Weber U, Szelinski F, Jahrsdörfer B, Schrezenmeier H, Ludwig C, Sattler A, et al. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients. *Science Immunology* 2021, 6, doi:10.1126/sciimmunol.abj1031.
- 163. Rodríguez-Espinosa D, Broseta JJ, Francisco M, José Luis B, Vera M. Humoral response of mRNA-1273 SARS-CoV-2 vaccine in peritoneal dialysis patients. *Kidney International* 2021:S0085253821005585, doi:10.1016/j.kint.2021.05.018.
- 164. Roeker LE, Knorr DA, Thompson MC, Nivar M, Lebowitz S, Peters N, Deonarine I, Momotaj S, Sharan S, Chanlatte V, et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. *Leukemia* 2021:1-3, doi:10.1038/s41375-021-01270-w.
- 165. Rozen-Zvi B, et al. Antibody response to mRNA SARS-CoV-2 vaccine among kidney transplant recipients Prospective cohort study. *Clinical Microbiology and Infection* 2021, doi:10.1016/j.cmi.2021.04.028.
- 166. Rubbert-Roth A, Vuilleumier N, Ludewig B, Schmiedeberg K, Haller C, Kempis Jv. Anti-SARS-CoV-2 mRNA vaccine in patients with rheumatoid arthritis. *The Lancet Rheumatology* 2021, 0, doi:10.1016/S2665-9913(21)00186-7.
- 167. Ruddy JA, Boyarsky BJ, Werbel WA, Bailey JR, Karaba AH, Garonzik-Wang JM, Segev DL, Durand CM. Safety and antibody response to the first dose of SARS-CoV-2 messenger RNA vaccine in persons with HIV. *AIDS (London, England)* 2021, doi:10.1097/QAD.0000000002945.
- 168. Rusk DS, Strachan CC, Hunter BR. Lack of immune response after mRNA vaccination to SARS-CoV-2 in a solid organ transplant patient. *Journal of Medical Virology* 2021, n/a, doi:https://doi.org/10.1002/jmv.27044.
- 169. Sattler A, Schrezenmeier E, Weber U, Potekhin A, Bachmann F, Budde K, Storz E, Proß V, Bergmann Y, Thole L, et al. Impaired Humoral and Cellular Immunity after SARS-CoV2 BNT162b2 (Tozinameran) Prime-Boost Vaccination in Kidney Transplant Recipients. *medRxiv* 2021:2021.2004.2006.21254963, doi:10.1101/2021.04.06.21254963.
- 170. Sattler A, Schrezenmeier E, Weber UA, Potekhin A, Bachmann F, Straub-Hohenbleicher H, Budde K, Storz E, Proß V, Bergmann Y, et al. Impaired humoral and cellular immunity after SARS-CoV2 BNT162b2 (Tozinameran) prime-boost vaccination in kidney transplant recipients. *The Journal of Clinical Investigation* 2021, doi:10.1172/JCI150175.
- 171. Schrezenmeier E, Bergfeld L, Hillus D, Lippert J-D, Weber U, Tober-Lau P, Landgraf I, Schwarz T, Kappert K, Stefanski A-L, et al. Immunogenicity of COVID-19 Tozinameran Vaccination in Patients on Chronic Dialysis. *medRxiv* 2021:2021.2003.2031.21254683, doi:10.1101/2021.03.31.21254683.
- 172. Shostak Y, Shafran N, Heching M, Rosengarten D, Shtraichman O, Shitenberg D, Amor SM, Yahav D, Zvi HB, Pertzov B, et al. Early humoral response among lung transplant recipients vaccinated with BNT162b2 vaccine. *The Lancet Respiratory Medicine* 2021, doi:10.1016/S2213-2600(21)00184-3.
- 173. Shroff RT, Chalasani P, Wei R, Pennington D, Quirk G, Schoenle MV, Uhrlaub JL, Ripperger TJ, Jergović M, Dalgai S, et al. Immune Responses to COVID-19 mRNA Vaccines in Patients with Solid Tumors on Active, Immunosuppressive Cancer Therapy. *medRxiv* 2021:2021.2005.2013.21257129, doi:10.1101/2021.05.13.21257129.
- 174. Shrotri M, Fragaszy E, Geismar C, Nguyen V, Beale S, Braithwaite I, Byrne TE, Erica Fong WL, Kovar J, Navaratnam AMD, et al. Spike-antibody responses following first and second doses of ChAdOx1 and BNT162b2 vaccines by age, gender, and clinical factors a prospective community cohort study (Virus Watch). *medRxiv* 2021:2021.2005.2012.21257102, doi:10.1101/2021.05.12.21257102.
- 175. Simon B, Rubey H, Treipl A, Gromann M, Hemedi B, Zehetmayer S, Kirsch B. Hemodialysis Patients Show a Highly Diminished Antibody Response after COVID-19 mRNA Vaccination Compared to Healthy Controls. *medRxiv* 2021:2021.2003.2026.21254259, doi:10.1101/2021.03.26.21254259.
- 176. Simon B, Rubey H, Treipl A, Gromann M, Hemedi B, Zehetmayer S, Kirsch B. Haemodialysis patients show a highly diminished antibody response after COVID-19 mRNA vaccination compared to healthy controls. *Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association European Renal Association* 2021, doi:10.1093/ndt/gfab179.
- 177. Simon D, Tascilar K, Schmidt K, Manger B, Weckwerth L, Sokolova M, Bucci L, Fagni F, Manger K, Schuch F, et al. Brief Report: Humoral and cellular immune responses to SARS-CoV-2 infection and vaccination in B cell depleted autoimmune patients. *Arthritis Rheumatol* 2021, 2021/07/02, doi:10.1002/art.41914.
- 178. Simon D, Tascilar K, Fagni F, Krönke G, Kleyer A, Meder C, Atreya R, Leppkes M, Kremer AE, Ramming A, et al. SARS-CoV-2 vaccination responses in untreated, conventionally treated and anticytokine-treated patients with immune-mediated inflammatory diseases. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220461.

- 179. Sindhi R, Ashokkumar C, Spishock B, Saunders M, Mabasa A, Sethi P, Reddy A, Nibhanupudy B. T-cell and antibody immunity after COVID-19 mRNA vaccines in healthy and immunocompromised subjects-An exploratory study. *medRxiv* 2021:2021.2005.2021.21257442, doi:10.1101/2021.05.21.21257442.
- 180. Spiera R, Jinich S, Jannat-Khah D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS- CoV-2 vaccination in patients with rheumatic diseases. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220604.
- 181. Steber CR, Ponnatapura J, Hughes RT, Farris MK. Rapid Development of Clinically Symptomatic Radiation Recall Pneumonitis Immediately Following COVID-19 Vaccination. *Cureus* 2021, 13, doi:10.7759/cureus.14303.
- 182. Strengert M, Becker M, Ramos GM, Dulovic A, Gruber J, Juengling J, Lürken K, Beigel A, Wrenger E, Lonnemann G, et al. Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on hemodialysis. *medRxiv* 2021:2021.2005.2026.21257860, doi:10.1101/2021.05.26.21257860.
- 183. Terpos E, Trougakos IP, Gavriatopoulou M, Papassotiriou I, Sklirou AD, Ntanasis-Stathopoulos I, Papanagnou E-DD, Fotiou D, Kastritis E, Dimopoulos MA. Low Neutralizing Antibody Responses Against SARS-CoV-2 in Elderly Myeloma Patients After the First BNT162b2 Vaccine Dose. *Blood* 2021, doi:10.1182/blood.2021011904.
- 184. Terpos E, Zagouri F, Liontos M, Sklirou AD, Koutsoukos K, Markellos C, Briasoulis A, Papanagnou E-D, Trougakos IP, Dimopoulos M-A. Low titers of SARS-CoV-2 neutralizing antibodies after first vaccination dose in cancer patients receiving checkpoint inhibitors. *Journal of Hematology & Oncology* 2021, 14:86, doi:10.1186/s13045-021-01099-x.
- 185. Terracina KA, Tan FK. Flare of rheumatoid arthritis after COVID-19 vaccination. *The Lancet Rheumatology* 2021, 0, doi:10.1016/S2665-9913(21)00108-9.
- 186. Torreggiani M, Blanchi S, Fois A, Fessi H, Piccoli GB. Neutralizing SARS-CoV-2 antibody response in dialysis patients after the first dose of the BNT162b2 mRNA Covid-19 vaccine. The war is far from being won. *Kidney International* 2021, doi:10.1016/j.kint.2021.04.010.
- 187. Touizer E, Alrubayyi A, Rees-Spear C, Fisher-Pearson N, Griffith SA, Muir L, Pellegrino P, Waters L, Burns F, Kinloch S, et al. Failure to seroconvert after two doses of BNT162b2 SARS-CoV-2 vaccine in a patient with uncontrolled HIV. *The lancet. HIV* 2021, 8:e317-e318, doi:10.1016/S2352-3018(21)00099-0.
- 188. Tzarfati KH, Gutwein O, Apel A, Rahimi-Levene N, Sadovnik M, Harel L, Benveniste-Levkovitz P, Chaim AB, Koren-Michowitz M. BNT162b2 COVID-19 Vaccine is significantly less effective in patients with hematologic malignancies. *Am J Hematol* 2021, 2021/06/30, doi:10.1002/ajh.26284.
- 189. Vyhmeister R, Enestvedt CK, VanSandt M, Schlansky B. Steroid-resistant acute cellular rejection of the liver after SARS-CoV-2 mRNA vaccination. *Liver Transplantation* 2021, n/a, doi:https://doi.org/10.1002/lt.26097.
- 190. Wadei HM, Gonwa TA, Leoni JC, Shah SZ, Aslam N, Speicher LL. COVID-19 infection in Solid Organ Transplant Recipients after SARS-CoV-2 vaccination. *American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons* 2021, doi:10.1111/ajt.16618.
- 191. Waissengrin B, Agbarya A, Safadi E, Padova H, Wolf I. Short-term safety of the BNT162b2 mRNA COVID-19 vaccine in patients with cancer treated with immune checkpoint inhibitors. *The Lancet Oncology* 2021, 0, doi:10.1016/S1470-2045(21)00155-8.
- 192. Watad A, De Marco G, Mahajna H, Druyan A, Eltity M, Hijazi N, Haddad A, Elias M, Zisman D, Naffaa ME, et al. Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination. *Vaccines* 2021, 9:435, doi:10.3390/vaccines9050435.
- 193. Weinstock-Guttman B, Jakimovski D. Late-onset cutaneous reaction to BNT162b2 mRNA COVID-19 vaccine in an immunocompromised patient. *Multiple Sclerosis Journal* 2021:13524585211022037, doi:10.1177/13524585211022037.
- 194. Werbel WA, Boyarsky BJ, Ou MT, Massie AB, Tobian AAR, Garonzik-Wang JM, Segev DL. Safety and Immunogenicity of a Third Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series. *Annals of Internal Medicine* 2021.
- 195. Yanay NB, Freiman S, Shapira Ma, Wishahi S, Hamze M, Elhaj M, Zaher M, Armaly Z. Experience with SARS-COV-2 BNT162b2 mRNA vaccine in dialysis patients. *Kidney International* 2021, doi:10.1016/j.kint.2021.04.006.
- 196. Yau K, Abe KT, Naimark D, Oliver MJ, Perl J, Leis JA, Bolotin S, Tran V, Mullin S, Shadowitz E, et al. The Humoral Response to the BNT162b2 Vaccine in Hemodialysis Patients. *medRxiv* 2021:2021.2005.2024.21257425, doi:10.1101/2021.05.24.21257425.
- 197. Yi SG, Eager T, Moore L, Huang HJ, Ibrahim H, Hobeika MJ, McMillan R, Podder H, Ghobrial RM, Gaber AO, et al. Persistent Immunogenicity of the mRNA COVID-19 Vaccine in Patients Vaccinated Before Kidney Transplant. *Transplantation* 2021, Publish Ahead of Print, doi:10.1097/TP.00000000003872.
- 198. Yi SG, Knight RJ, Graviss EA, Nguyen DT, Ghobrial RM, Gaber AO, Huang HJ. Kidney Transplant Recipients Rarely Show an Early Antibody Response Following the First COVID-19 Vaccine Administration. *Transplantation* 2021, doi:10.1097/TP.00000000003764.
- 199. Young-Xu Y, Korves C, Powell EI, Zwain GM, Smith J. Coverage and effectiveness of mRNA SARS-CoV-2 vaccines among United States Veterans. *medRxiv* 2021:2021.2006.2014.21258906, doi:10.1101/2021.06.14.21258906.

Strategy for Patient-Oriented Research

- 200. Chevallier P, Coste-Burel M, Le Bourgeois A, Peterlin P, Garnier A, Béné MC, Imbert BM, Drumel T, Le Gouill S, Moreau P, et al. Safety and immunogenicity of a first dose of SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem-cells recipients. *eJHaem* 2021:jha2.242, doi:10.1002/jha2.242.
- 201. Espi M, Charmetant X, Barba T, Pelletier C, Koppe L, Chalencon E, Kalbacher E, Mathias V, Ovize A, Cart-Tanneur E, et al. Justification, safety, and efficacy of a third dose of mRNA vaccine in maintenance hemodialysis patients: a prospective observational study. *medRxiv* 2021:2021.2007.2002.21259913, doi:10.1101/2021.07.02.21259913.
- 202. Tenforde MW, Patel MM, Ginde AA, Douin DJ, Talbot HK, Casey JD, Mohr NM, Zepeski A, Gaglani M, McNeal T, et al. Effectiveness of SARS-CoV-2 mRNA Vaccines for Preventing Covid-19 Hospitalizations in the United States. *medRxiv* 2021:2021.2007.2008.21259776, doi:10.1101/2021.07.08.21259776.
- 203. Moyon Q, Sterlin D, Miyara M, Anna F, Mathian A, Lhote R, Ghillani-Dalbin P, Breillat P, Mudumba S, de Alba S, et al. BNT162b2 vaccine-induced humoral and cellular responses against SARS-CoV-2 variants in Systemic Lupus Erythematosus. medRxiv 2021:2021.2007.21260124, doi:10.1101/2021.07.07.21260124.
- 204. Mahil SK, Bechman K, Raharja A, Domingo-Vila C, Baudry D, Brown MA, Cope AP, Dasandi T, Graham C, Lechmere T, et al. The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study. *The Lancet Rheumatology* 2021, doi:10.1016/S2665-9913(21)00212-5.
- 205. Holden IK, Bistrup C, Nilsson AC, Hansen JF, Abazi R, Davidsen JR, Poulsen MK, Lindvig SO, Justesen US, Johansen IS. Immunogenicity of SARS-CoV-2 mRNA vaccine in solid organ transplant recipients. *J Intern Med* 2021, 2021/07/09, doi:10.1111/joim.13361.
- 206. Hansen CB, Jarlhelt I, Hasselbalch RB, Hamm SR, Fogh K, Pries-Heje M, Møller DL, Heftdal LD, Pérez-Alós L, Sørensen E, et al. Antibody-dependent neutralizing capacity of the SARS-CoV-2 vaccine BNT162b2 with and without previous COVID-19 priming. *J Intern Med* 2021, 2021/07/09, doi:10.1111/joim.13366.
- 207. Goshen-Lago T, Waldhorn I, Holland R, Szwarcwort-Cohen M, Reiner-Benaim A, Shachor-Meyouhas Y, Hussein K, Fahoum L, Baruch M, Peer A, et al. Serologic Status and Toxic Effects of the SARS-CoV-2 BNT162b2 Vaccine in Patients Undergoing Treatment for Cancer. *JAMA Oncol* 2021, 2021/07/09, doi:10.1001/jamaoncol.2021.2675.
- 208. Tsapepas D, Paget K, Mohan S, Cohen DJ, Husain SA. Clinically Significant COVID-19 Following SARS-CoV-2 Vaccination in Kidney Transplant Recipients. *American Journal of Kidney Diseases* 2021, doi:10.1053/j.ajkd.2021.05.004.
- 209. Khan N, Mahmud N. Effectiveness of SARS-CoV-2 Vaccination in a Veterans Affairs Cohort of Patients With Inflammatory Bowel Disease With Diverse Exposure to Immunosuppressive Medications. *Gastroenterology* 2021, doi:10.1053/j.gastro.2021.05.044.
- 210. Iannone M, Janowska A, Tonini G, Davini G, Dini V. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine during Ixekizumab treatment for hidradenitis suppurativa. *Clinics in dermatology* 2021, doi:10.1016/j.clindermatol.2021.05.026.
- 211. Iacono D, Cerbone L, Palombi L, Cavalieri E, Sperduti I, Cocchiara RA, Mariani B, Parisi G, Garufi C. Serological response to COVID-19 vaccination in patients with cancer older than 80 years. *Journal of Geriatric Oncology* 2021, doi:10.1016/j.jgo.2021.06.002.
- 212. Papasavvas I, Herbort CP. Reactivation of Vogt-Koyanagi-Harada disease under control for more than 6 years, following anti-SARS-CoV-2 vaccination. J Ophthalmic Inflamm Infect 2021, 11,2021/07/06:21, doi:10.1186/s12348-021-00251-5.
- 213. Mostafa HH, Luo cH, Morris CP, Li M, Swanson NJ, Amadi A, Gallagher N, Pekosz A. SARS-CoV-2 Infections in mRNA Vaccinated Individuals are Biased for Viruses Encoding Spike E484K and Associated with Reduced Infectious Virus Loads that Correlate with Respiratory Antiviral IgG levels. *medRxiv* 2021:2021.2007.2005.21259105, doi:10.1101/2021.07.05.21259105.
- 214. Greenhall GHB, Ushiro-Lumb I, Pavord S, Currie I, Perera MTPR, Hartog H, Hill QA, Mohamed I, Khurram MA, Motallebzadeh R, et al. Organ transplantation from deceased donors with vaccine-induced thrombosis and thrombocytopenia. *American Journal of Transplantation* 2021, n/a, doi:10.1111/ajt.16735.
- 215. Ben-Tov A, Banon T, Chodick G, Kariv R, Assa A, Gazit S. BNT162b2 mRNA COVID-19 Vaccine Effectiveness in Patients with Inflammatory Bowel Disease: Preliminary Real World Data during Mass Vaccination Campaign. *Gastroenterology* 2021, 2021/07/06, doi:10.1053/j.gastro.2021.06.076.
- 216. Malinis M, Cohen E, Azar MM. Effectiveness of SARS-CoV-2 vaccination in fully vaccinated solid organ transplant recipients. *American Journal of Transplantation* 2021, n/a, doi:https://doi.org/10.1111/ajt.16713.
- 217. Massa F, Cremoni M, Gerard A, Grabsi H, Rogier L, Blois M, Ben Hassen N, Rouleau M, Barbosa S, Martinuzzi E, et al. Safety and Cross-Variant Immunogenicity of a Three-Dose COVID-19 mRNA Vaccine Regimen in Kidney Transplant Recipients. SSRN- Lancet prepublication 2021.
- 218. Re D, Seitz-Polski b, Carles M, Brglez V, Graca D, Benzaken S, Liguori s, Zahreddine K, Delforge m, Verriere B, et al. Humoral and cellular responses after a third dose of BNT162b2 vaccine in patients treated for lymphoid malignancies. *medRxiv* 2021:2021.2007.2018.21260669, doi:10.1101/2021.07.18.21260669.
- 219. Frantzen L, Thibeaut S, Moussi-Frances J, Indreies M, Kiener C, Saingra Y, Santini J, Stroumza P, El-Haik Y, Cavaille G. COVID-19 Vaccination in Haemodialysis Patients: Good things come in threes.... Nephrol Dial Transplant 2021, 2021/07/22, doi:10.1093/ndt/gfab224.

- 220. Re D, Seitz-Polski B, Carles M. Humoral and cellular responses after a third dose of BNT162b2 vaccine in patients with lymphoid malignancies. *Research Square prepub* 2021, doi:10.21203/rs.3.rs-727941/v1.
- 221. Benotmane I, Gautier G, Perrin P, Olagne J, Cognard N, Fafi-Kremer S, Caillard S. Antibody Response After a Third Dose of the mRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients With Minimal Serologic Response to 2 Doses. *JAMA* 2021, doi:10.1001/jama.2021.12339.
- 222. Massa F, Cremoni M, Gerard A, Grabsi H, Rogier L, Blois M, Ben Hassen N, Rouleau M, Barbosa S, Martinuzzi E, et al. Safety and Cross-Variant Immunogenicity of a Three-Dose COVID-19 mRNA Vaccine Regimen in Kidney Transplant Recipients. SSRN- Lancet prepublication 2021.
- 223. Frantzen L, Thibeaut S, Moussi-Frances J, Indreies M, Kiener C, Saingra Y, Santini J, Stroumza P, El-Haik Y, Cavaille G. COVID-19 Vaccination in Haemodialysis Patients: Good things come in threes.... *Nephrol Dial Transplant* 2021, 2021/07/22, doi:10.1093/ndt/gfab224.
- 224. Re D, Seitz-Polski B, Carles M. Humoral and cellular responses after a third dose of BNT162b2 vaccine in patients with lymphoid malignancies. *Research Square prepub* 2021, doi:10.21203/rs.3.rs-727941/v1.
- 225. Labriola L, Scohy A, Van Regemorter E, Robert A, Clerbaux G, Gillerot G, Pochet JM, Biller P, De Schuiteneer M, Morelle J, et al. Immunogenicity of BNT162b2 SARS-CoV-2 Vaccine in a Multicenter Cohort of Nursing Home Residents Receiving Maintenance Hemodialysis. *Am J Kidney Dis* 2021, 2021/08/09, doi:10.1053/j.ajkd.2021.07.004.
- 226. Hadjadj J, Planas D, Ouedrani A, Buffier S, Delage L, Nguyen Y, Bruel T, Stolzenberg M-C, Staropoli I, Ermak N, et al. Immunogenicity of BNT162b2 vaccine Against the Alpha and Delta Variants in Immunocompromised Patients. *medRxiv* 2021:2021.2008.2008.21261766, doi:10.1101/2021.08.08.21261766.
- 227. Chemaitelly H, AlMukdad S, Joy JP, Ayoub HH, Yassine HM, Benslimane F, Khatib HAA, Tang P, Hasan MR, Coyle P, et al. SARS-CoV-2 vaccine effectiveness in immunosuppressed kidney transplant recipients. *medRxiv* 2021:2021.2008.2007.21261578, doi:10.1101/2021.08.07.21261578.
- 228. Cao J, Liu X, Muthukumar A, Gagan J, Jones P, Zu Y. Poor Humoral Response in Solid Organ Transplant Recipients following Complete mRNA SARS-CoV-2 Vaccination. *Clin Chem* 2021, 2021/08/07, doi:10.1093/clinchem/hvab149.
- 229. Boekel L, Steenhuis M, Hooijberg F, Besten YR, van Kempen ZLE, Kummer LY, van Dam KPJ, Stalman EW, Vogelzang EH, Cristianawati O, et al. Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies. *The Lancet Rheumatology* 2021:S2665991321002228, doi:10.1016/S2665-9913(21)00222-8.
- 230. Tenforde MW, Patel MM, Ginde AA, Douin DJ, Talbot HK, Casey JD, Mohr NM, Zepeski A, Gaglani M, McNeal T, et al. Effectiveness of SARS-CoV-2 mRNA Vaccines for Preventing Covid-19 Hospitalizations in the United States. *Clinical Infectious Diseases (preprint July 12)* 2021, doi:10.1093/cid/ciab687.
- 231. Tano GD, Moschini L, Calvaruso EV, Danzi GB. Recurrent Myocarditis After the First Dose of SARS-CoV-2 mRNA-1273 Vaccine. Research Square Preprint 2021, doi:10.21203/rs.3.rs-699585/v1.
- 232. Romano C, Esposito S, Donnarumma G, Marrone A. DETECTION OF NEUTRALIZING ANTI-SARS-CoV-2 ANTIBODIES IN COMMON VARIABLE IMMUNODEFICIENCY PATIENTS FOLLOWING IMMUNIZATION WITH mRNA VACCINES. Ann Allergy Asthma Immunol 2021, 2021/08/06, doi:10.1016/j.anai.2021.07.026.
- 233. Prendecki M, Clarke C, Edwards H, McIntyre S, Mortimer P, Gleeson S, Martin P, Thomson T, Randell P, Shah A, et al. Humoral and T-cell responses to SARS-CoV-2 vaccination in patients receiving immunosuppression. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220626.
- 234. Abe KT, Hu Q, Mozafarihashjin M, Samson R, Manguiat K, Robinson A, Rathod B, Chao G, Wang JH, Iskilova M, et al. Neutralizing antibody responses to SARS-CoV-2 variants in vaccinated Ontario long-term care home residents and workers. *medRxiv* 2021:2021.2008.2006.21261721, doi:10.1101/2021.08.06.21261721.
- 235. Marinelli T, Chaparro C, Humar A, Kumar D. Paucisymptomatic COVID-19 in lung transplant recipient following two doses of mRNA-1273 (Moderna) vaccine. *Journal of Heart and Lung Transplantation* 2021, doi:10.1016/j.healun.2021.06.007.
- 236. Liao S-Y, Gerber AN, Zelarney P, Make B, Wechsler ME. Impaired SARS-CoV-2 mRNA vaccine antibody response in chronic medical conditions: a real-world data analysis. *medRxiv* 2021:2021.2008.2003.21261483, doi:10.1101/2021.08.03.21261483.
- 237. Lacson E, Argyropoulos C, Manley H, Aweh G, Chin A, Salman L, Hsu C, Johnson D, Weiner D. Immunogenicity of SARS-CoV-2 Vaccine in Dialysis. *J Am Soc Nephrol* 2021, 2021/08/06, doi:10.1681/asn.2021040432.
- 238. Izmirly PM, Kim MY, Samanovic M, Fernandez-Ruiz R, Ohana S, Deonaraine KK, Engel AJ, Masson M, Xie X, Cornelius AR, et al. Evaluation of Immune Response and Disease Status in SLE Patients Following SARS-CoV-2 Vaccination. Arthritis & Rheumatology 2021, n/a, doi:10.1002/art.41937.
- 239. Hall VG, Ferreira VH, Ierullo M, Ku T, Marinelli T, Majchrzak-Kita B, Yousuf A, Kulasingam V, Humar A, Kumar D. Humoral and cellular immune response and safety of two-dose SARS-CoV-2 mRNA-1273 vaccine in solid organ transplant recipients. *Am J Transplant* 2021, 2021/08/05, doi:10.1111/ajt.16766.
- 240. Ghandili S, Schönlein M, Lütgehetmann M, Schulze Zur Wiesch J, Becher H, Bokemeyer C, Sinn M, Weisel KC, Leypoldt LB. Post-vaccination anti-sars-cov-2-antibody response in patients with multiple myeloma correlates with low cd19+ b-lymphocyte count and anti-cd38 treatment. *Cancers* 2021, 13, doi:10.3390/cancers13153800.

Strategy for Patient-Oriented Research

- 241. Cook C, Patel N, D'Silva K, Hsu TTY, Dilorio M, Prisco L, Martin L, Vanni KMM, Zaccardelli A, Todd DJ, et al. Clinical characteristics and outcomes of COVID-19 breakthrough infections among vaccinated patients with systemic autoimmune rheumatic diseases. *medRxiv* 2021:2021.2008.2004.21261618, doi:10.1101/2021.08.04.21261618.
- 242. Benda M, Mutschlechner B, Ulmer H, Grabher C, Severgnini L, Volgger A, Reimann P, Lang T, Atzl M, Huynh M, et al. Serological SARS-CoV-2 antibody response, potential predictive markers and safety of BNT162b2 mRNA COVID-19 vaccine in haematological and oncological patients. *Br J Haematol* 2021, 2021/08/05, doi:10.1111/bjh.17743.
- 243. Garcia P, Anand S, Han J, Montez-Rath M, Sun S, Shang T, Parsonnet J, Chertow GM, Abra G, Schiller B. COVID19 vaccine type and humoral immune response in patients receiving dialysis. *medRxiv* 2021:2021.2008.2002.21261516, doi:10.1101/2021.08.02.21261516.
- 244. Connolly CM, Ruddy JA, Boyarsky BJ, Barbur I, Werbel WA, Geetha D, Garonzik-Wang JM, Segev DL, Christopher-Stine L, Paik JJ. Disease Flare and Reactogenicity in Patients with Rheumatic and Musculoskeletal Diseases Following Two-Dose SARS-CoV-2 Messenger RNA Vaccination. *Arthritis & Rheumatology* 2021:art.41924, doi:10.1002/art.41924.
- 245. Abo-Helo N, Muhammad E, Ghaben-Amara S, Panasoff J, Cohen S. Specific antibody response of common variable immunodeficiency patients to BNT162b2 COVID-19 vaccination. *Ann Allergy Asthma Immunol* 2021, 2021/08/04, doi:10.1016/j.anai.2021.07.021.
- 246. Zitt E, Davidovic T, Schimpf J, Abbassi-Nik A, Mutschlechner B, Ulmer H, Benda MA, Sprenger-Mähr H, Winder T, Lhotta K. The Safety and Immunogenicity of the mRNA-BNT162b2 SARS-CoV-2 Vaccine in Hemodialysis Patients. *Frontiers in immunology* 2021, 12:704773, doi:10.3389/fimmu.2021.704773.
- 247. Rashidi-Alavijeh J, Frey A, Passenberg M, Korth J, Zmudzinski J, Anastasiou OE, Saner FH, Jahn M, Lange CM, Willuweit K. Humoral response to SARS-CoV-2 vaccination in liver transplant recipients–a single-center experience. *Vaccines* 2021, 9, doi:10.3390/vaccines9070738.
- 248. Midtvedt K, Tran T, Parker K, Marti HP, Stenehjem AE, Gøransson LG, Mørkve Soldal K, Madsen C, Smedbråten J, Vaage EB, et al. Low Immunization Rate in Kidney Transplant Recipients Also After Dose 2 of the BNT162b2 Vaccine: Continue to Keep Your Guard up! *Transplantation* 2021, 105,2021/06/17:e80-e81, doi:10.1097/tp.00000000003856.
- 249. Mehta RB, Silveira FP. COVID-19 after two doses of mRNA vaccines in kidney transplant recipients. *Am J Transplant* 2021, 2021/08/01, doi:10.1111/ajt.16778.
- 250. Lin S, Kennedy NA, Saifuddin A. Covid-19 vaccine-induced antibodies are attenuated and decay rapidly in infliximab treated patients. *Research Square prepub* 2021, doi:10.21203/rs.3.rs-755879/v1.
- 251. Heudel P, Favier B, Assaad S, Zrounba P, Blay JY. Reduced SARS-COV-2 infection and death after two doses of COViD-19 vaccines in a series of 1503 cancer patients. *Ann Oncol* 2021, 2021/08/02, doi:10.1016/j.annonc.2021.07.012.
- 252. Guglielmelli P, Mazzoni A, Maggi L, Kiros ST, Zammarchi L, Pilerci S, Rocca A, Spinicci M, Borella M, Bartoloni A, et al. Impaired response to first SARS-CoV-2 dose vaccination in myeloproliferative neoplasm patients receiving ruxolitinib. *Am J Hematol* 2021, 2021/08/01, doi:10.1002/ajh.26305.
- 253. Di Meo A, Miller JJ, Fabros A, Brinc D, Hall V, Pinzon N, Ierullo M, Ku T, Ferreira VH, Kumar D, et al. Evaluation of Three anti-SARS-CoV-2 Serologic Immunoassays for Post-Vaccine Response. *The Journal of Applied Laboratory Medicine* 2021, doi:10.1093/jalm/jfab087.
- 254. Chang KM, Berlinrut I, Wallach FR. A case of severe COVID-19 despite full vaccination with mRNA-1273 SARS-CoV-2 Vaccine (Moderna) in a kidney transplant recipient. *Transpl Infect Dis* 2021, 2021/08/03, doi:10.1111/tid.13710.
- 255. Atanackovic D, Luetkens T, Avila SV, Hardy NM, Lutfi F, Sanchez-Petitto G, Mause EV, Glynn N, Mannuel HD, Alkhaldi H, et al. Anti-sars-cov-2 immune responses in patients receiving an allogeneic stem cell or organ transplant. *Vaccines* 2021, 9, doi:10.3390/vaccines9070737.
- 256. Stampfer SD, Goldwater M-S, Jew S, Bujarski S, Regidor B, Daniely D, Chen H, Xu N, Li M, Green T, et al. Response to mRNA vaccination for COVID-19 among patients with multiple myeloma. *Leukemia* 2021:1-8, doi:10.1038/s41375-021-01354-7.
- 257. Pimpinelli F, Marchesi F, Piaggio G, Giannarelli D, Papa E, Falcucci P, Spadea A, Pontone M, Di Martino S, Laquintana V, et al. Lower response to BNT162b2 vaccine in patients with myelofibrosis compared to polycythemia vera and essential thrombocythemia. *Journal of Hematology & Oncology* 2021, 14:119, doi:10.1186/s13045-021-01130-1.
- 258. Parry H, McIlroy G, Bruton R, Ali M, Stephens C, Damery S, Otter A, McSkeane T, Rolfe H, Faustini S, et al. Antibody responses after first and second Covid-19 vaccination in patients with chronic lymphocytic leukaemia. *Blood Cancer Journal Preprint May* 27 2021, 11:1-8, doi:10.1038/s41408-021-00528-x.
- 259. Del Bello A, Abravanel F, Marion O, Couat C, Esposito L, Lavayssière L, Izopet J, Kamar N. Efficiency of a boost with a third dose of anti–SARS-CoV-2 messenger RNA–based vaccines in solid organ transplant recipients. *American Journal of Transplantation* 2021, n/a, doi:10.1111/ajt.16775.
- 260. Cserep G, Morrow D, Latchford K, Jesset R, Dosa A, Kirmizis D. The effect of a single dose of BNT162b2 vaccine on the incidence of severe COVID-19 infection in patients on chronic hemodialysis: a single-centre study. *Clinical and Experimental Nephrology* 2021, doi:10.1007/s10157-021-02118-4.
- 261. Aslam S, Adler E, Mekeel K, Little SJ. Clinical Effectiveness of COVID-19 Vaccination in Solid Organ Transplant Recipients. *Transplant Infectious Disease* 2021, n/a, doi:10.1111/tid.13705.

Strategy for Patient-Oriented Research

- 262. Hill JA, Ujjani CS, Greninger AL, Shadman M, Gopal AK. Immunogenicity of a heterologous COVID-19 vaccine after failed vaccination in a lymphoma patient. *Cancer Cell* 2021, doi:10.1016/j.ccell.2021.06.015.
- 263. Gurion R, Rozovski U, Itchaki G, Gafter-Gvili A, Leibovitch C, Raanani P, Ben-Zvi H, Szwarcwort M, Taylor-Abigadol M, Dann EJ, et al. Humoral serologic response to the BNT162b2 vaccine is abrogated in lymphoma patients within the first 12 months following treatment with anti-CD2O antibodies. *Haematologica* 2021, 2021/07/30, doi:10.3324/haematol.2021.279216.
- 264. Benjamini O, Rokach L, Itchaki G, Braester A, Shvidel L, Goldschmidt N, Shapira S, Dally N, Avigdor A, Rahav G, et al. Safety and efficacy of BNT162b mRNA Covid19 Vaccine in patients with chronic lymphocytic leukemia. *Haematologica* 2021, 2021/07/30, doi:10.3324/haematol.2021.279196.
- 265. Anjan S, Natori Y, Fernandez Betances AA, Agritelley MS, Mattiazzi A, Arosemena L, Andrews DM, Simkins J, Guerra G, Abbo LM. Breakthrough COVID-19 infections after mRNA vaccination in Solid Organ Transplant Recipients in Miami, Florida. *Transplantation* 2021, 2021/07/29, doi:10.1097/tp.00000000003902.
- 266. Malinis M, Cohen E, Azar MM. Effectiveness of SARS-CoV-2 vaccination in fully vaccinated solid organ transplant recipients. *American Journal of Transplantation* 2021, doi:10.1111/ajt.16713.
- 267. Re D, Barrière J, Chamorey E, Delforge M, Gastaud L, Petit E, Chaminade A, Verrière B, Peyrade F. Low rate of seroconversion after mRNA anti-SARS-CoV-2 vaccination in patients with hematological malignancies. *Leuk Lymphoma* 2021, 2021/07/27:1-3, doi:10.1080/10428194.2021.1957877.
- 268. Qin CX, Moore LW, Anjan S, Rahamimov R, Sifri CD, Ali NM, Morales MK, Tsapepas DS, Basic-Jukic N, Miller RA, et al. Risk of Breakthrough SARS-CoV-2 Infections in Adult Transplant Recipients. *Transplantation* 2021, 2021/07/27, doi:10.1097/tp.00000000003907.
- 269. Hod T, Ben-David A, Olmer L, Levy I, Ghinea R, Mor E, Lustig Y, Rahav G. Humoral Response of Renal Transplant Recipients to the BNT162b2 SARS-CoV-2 mRNA Vaccine Using Both RBD IgG and Neutralizing Antibodies. *Transplantation* 2021, Publish Ahead of Print, doi:10.1097/TP.00000000003889.
- 270. Drulovic J, Ivanovic J, Martinovic V, Tamas O, Veselinovic N, Cujic D, Gnjatovic M, Mesaros S, Pekmezovic T. Humoral response to SARS-CoV-2 and covid-19 vaccines in patients with multiple sclerosis treated with immune reconstitution therapies. *Multiple Sclerosis and Related Disorders* 2021, 54, doi:10.1016/j.msard.2021.103150.
- 271. Stumpf J, Siepmann T, Lindner T, Karger C, Schwöbel J, Anders L, Faulhaber-Walter R, Schewe J, Martin H, Schirutschke H, et al. Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transplant versus dialysis patients: A prospective, multicenter observational study using mRNA-1273 or BNT162b2 mRNA vaccine. *The Lancet Regional Health Europe* 2021, doi:10.1016/j.lanepe.2021.100178.
- 272. Ramanathan M, Murugesan K, Yang LM, Costales C, Bulterys PL, Schroers-Martin J, Alizadeh AA, Boyd SD, Brown JM, Nadeau KC, et al. Cell-Mediated and Humoral Immune Response to 2-Dose SARS-CoV2 mRNA vaccination in Immunocompromised patient population. *medRxiv* 2021:2021.2007.2021.21260921, doi:10.1101/2021.07.21.21260921.
- 273. Huzly D, Panning M, Smely F, Enders M, Komp J, Steinmann D. Validation and performance evaluation of a novel interferon-γ release assay for the detection of SARS-CoV-2 specific T-cell response. *medRxiv* 2021:2021.2007.2017.21260316, doi:10.1101/2021.07.17.21260316.
- 274. Charmetant X, Espi M, Benotmane I, Heibel F, Buron F, Gautier-Vargas G, Delafosse M, Perrin P, Koenig A, Cognard N, et al. Comparison of infected and vaccinated transplant recipients highlights the role of Tfh and neutralizing IgG in COVID-19 protection. *medRxiv* 2021:2021.2007.2022.21260852, doi:10.1101/2021.07.22.21260852.
- 275. Caocci G, Mulas O, Mantovani D, Costa A, Galizia A, Barabino L, Greco M, Murru R, La Nasa G. Ruxolitinib does not impair humoral immune response to COVID-19 vaccination with BNT162b2 mRNA COVID-19 vaccine in patients with myelofibrosis. *Ann Hematol* 2021, 2021/07/25, doi:10.1007/s00277-021-04613-w.
- 276. Woldemeskel BA, Karaba AH, Garliss CC, Beck EJ, Wang KH, Laeyendecker O, Cox AL, Blankson JN. The BNT162b2 mRNA Vaccine Elicits Robust Humoral and Cellular Immune Responses in People Living with HIV. *Clin Infect Dis* 2021, 2021/07/23, doi:10.1093/cid/ciab648.
- 277. Squire JD, Joshi AY. Safety of COVID-19 Vaccination in Immune-Deficient Patients Receiving Supplemental Immunoglobulin Therapies. *J Clin Immunol* 2021, 2021/07/23:1-4, doi:10.1007/s10875-021-01101-8.
- 278. Madelon N, Lauper K, Breville G, Royo IS, Goldstein R, Andrey DO, Grifoni A, Sette A, Siegrist C-A, Finckh A, et al. Patients treated with anti-CD20 therapy can mount robust T cell responses to mRNA-based COVID-19 vaccines. *medRxiv* 2021:2021.2007.2021.21260928, doi:10.1101/2021.07.21.21260928.
- 279. Herrera S, Colmenero J, Pascal M, Escobedo M, Castel MA, Sole-González E, Palou E, Egri N, Ruiz P, Mosquera M, et al. Cellular and humoral immune response after mRNA-1273 SARS-CoV-2 vaccine in liver and heart transplant recipients. *American Journal of Transplantation* 2021, n/a, doi:10.1111/ajt.16768.
- 280. Easdale S, Shea R, Ellis L, Bazin J, Davis K, Dallas F, Thistlethwayte E, Ethell M, Potter M, Arias C, et al. Serological responses following a single dose of SARS-CoV-2 vaccination in allogeneic stem cell transplant recipients. *Transplant Cell Ther* 2021, 2021/07/23, doi:10.1016/j.jtct.2021.07.011.
- 281. Benotmane I, Gautier G, Perrin P, Olagne J, Cognard N, Fafi-Kremer S, Caillard S. Antibody Response After a Third Dose of the mRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients With Minimal Serologic Response to 2 Doses. *JAMA* 2021, doi:10.1001/jama.2021.12339.

- 282. Weigert A, Bergman M-L, Gonçalves L, Godinho I, Duarte N, Abrantes R, Borges P, Brennand A, Malheiro V, Matoso P, et al. Longitudinal analysis of antibody responses to the Pfizer BNT162b2 vaccine in Patients Undergoing Maintenance Hemodialysis. *medRxiv* 2021:2021.2007.2020.21260849, doi:10.1101/2021.07.20.21260849.
- 283. Stefanski A-L, Rincon-Arevalo H, Schrezenmeier E, Karberg K, Szelinski F, Ritter J, Jahrsdoerfer B, Schrezenmeier H, Ludwig C, Sattler A, et al. B cell numbers predict humoral and cellular response upon SARS-CoV-2 vaccination among patients treated with rituximab. *medRxiv* 2021:2021.2007.2019.21260803, doi:10.1101/2021.07.19.21260803.
- 284. Sormani MP, Inglese M, Schiavetti I, Carmisciano L, Laroni A, Lapucci C, Da Rin G, Serrati C, Gandoglia I, Tassinari T, et al. Effect of SARS-CoV-2 mRNA Vaccination in MS Patients Treated With Disease Modifying Therapies. SSRN Electronic Journal 2021, doi:10.2139/ssrn.3886420.
- 285. Manni S, Lotte L, Bal A. Immunity to SARS-CoV-2 in a Dialyzed Patient Who Developed COVID-19 Twenty Days After the Second Dose of BNT162b2 Vaccine: a Case Report. *Research Square prepub* 2021, doi:10.21203/rs.3.rs-711429/v1.
- 286. Kaiser RA, Haller MC, Apfalter P, Kerschner H, Cejka D. Comparison of BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) SARS-CoV-2 mRNA vaccine immunogenicity in dialysis patients. *Kidney International* 2021:S0085253821006785, doi:10.1016/j.kint.2021.07.004.
- 287. Mrak D, Tobudic S, Koblischke M, Graninger M, Radner H, Sieghart D, Hofer P, Perkmann T, Haslacher H, Thalhammer R, et al. SARS-CoV-2 vaccination in rituximab-treated patients: B cells promote humoral immune responses in the presence of T-cell-mediated immunity. *Ann Rheum Dis* 2021, 2021/07/22, doi:10.1136/annrheumdis-2021-220781.
- 288. Gavriatopoulou M, Terpos E, Kastritis E, Briasoulis A, Gumeni S, Ntanasis-Stathopoulos I, Sklirou AD, Malandrakis P, Eleutherakis-Papaiakovou E, Migkou M, et al. Low neutralizing antibody responses in WM, CLL and NHL patients after the first dose of the BNT162b2 and AZD1222 vaccine. *Clin Exp Med* 2021, 2021/07/21:1-5, doi:10.1007/s10238-021-00746-4.
- 289. Espi M, Charmetant X, Barba T, Koppe L, Pelletier C, Kalbacher E, Chalencon E, Mathias V, Ovize A, Cart-Tanneur E, et al. The ROMANOV study found impaired humoral and cellular immune responses to SARSCov-2 mRNA vaccine in virus unexposed patients receiving maintenance hemodialysis. *Kidney Int* 2021, 2021/07/21, doi:10.1016/j.kint.2021.07.005.
- 290. Boyarsky BJ, Barbur I, Chiang TP, Ou MT, Greenberg RS, Teles AT, Krach MR, López JI, Garonzik-Wang J, Avery RK, et al. SARS-CoV-2 Messenger RNA Vaccine Immunogenicity in Solid Organ Transplant Recipients With Prior COVID-19. Transplantation 2021, 2021/07/21, doi:10.1097/tp.000000000003900.
- 291. Schrezenmeier E, Bergfeld L, Hillus D, Lippert J-D, Weber U, Tober-Lau P, Landgraf I, Schwarz T, Kappert K, Stefanski A-L, et al. Immunogenicity of COVID-19 Tozinameran Vaccination in Patients on Chronic Dialysis. *Frontiers in Immunology* 2021, 12:690698, doi:10.3389/fimmu.2021.690698.
- 292. Kastritis E, Terpos E, Sklirou A, Theodorakakou F, Fotiou D, Papanagnou ED, Bagratuni T, Kanellias N, Gavriatopoulou M, Trougakos IP, et al. Antibody Response After Initial Vaccination for SARS-CoV-2 in Patients With Amyloidosis. *Hemasphere* 2021, 5,2021/07/20:e614, doi:10.1097/hs9.00000000000614.
- 293. Rotondo C, Cantatore FP, Fornaro M, Colia R, Busto G, Rella V, Sciacca S, Lops L, Cici D, Maruotti N, et al. Preliminary data on post market safety profiles of covid 19 vaccines in rheumatic diseases: Assessments on various vaccines in use, different rheumatic disease subtypes, and immunosuppressive therapies: A two-centers study. *Vaccines* 2021, 9, doi:10.3390/vaccines9070730.
- 294. Golding B, Lee Y, Golding H, Khurana S. Pause in immunosuppressive treatment results in improved immune response to SARS-CoV-2 vaccine in autoimmune patient: a case report. *Ann Rheum Dis* 2021, 2021/07/18, doi:10.1136/annrheumdis-2021-220993.
- 295. Fox TA, Kirkwood AA, Enfield L, O'Reilly M, Arulogun S, D'Sa S, O'Nions J, Kavi J, Vitsaras E, Townsend W, et al. Low seropositivity and sub-optimal neutralisation rates in patients fully vaccinated against COVID-19 with B cell malignancies. *medRxiv* 2021:2021.2007.2019.21260762, doi:10.1101/2021.07.19.21260762.
- 296. Ali H, Ngo D, Aribi A, Arslan S, Dadwal S, Marcucci G, Nakamura R, Forman SJ, Chen J, Malki MMA. Safety and Tolerability of SARS-CoV-2 Emergency-Use Authorized Vaccines Allogeneic Hematopoietic Stem Cell Transplant Recipients. *Transplant Cell Ther* 2021, 2021/07/19, doi:10.1016/j.jtct.2021.07.008.
- 297. Ammitzbøll C, Bartels LE, Andersen JB, Vils SR, Mistegård CE, Johannsen AD, Hermansen M-LF, Thomsen MK, Erikstrup C, Hauge E-M, et al. Impaired Antibody Response to the BNT162b2 Messenger RNA Coronavirus Disease 2019 Vaccine in Patients With Systemic Lupus Erythematosus and Rheumatoid Arthritis. *ACR Open Rheumatology* 2021, n/a, doi:10.1002/acr2.11299.
- 298. Ruddy JA, Boyarsky BJ, Bailey JR, Karaba AH, Garonzik-Wang J, Segev DL, Durand CM, Werbel WA. Safety and antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in persons with HIV. *Aids* 2021, 2021/07/15, doi:10.1097/qad.00000000000017.
- 299. Redjoul R, Le Bouter A, Beckerich F, Fourati S, Maury S. Antibody response after second BNT162b2 dose in allogeneic HSCT recipients. *The Lancet* 2021, doi:10.1016/S0140-6736(21)01594-4.
- 300. Prendecki M, Thomson T, Clarke CL, Martin P, Gleeson S, Aguiar RcD, Edwards H, Mortimer P, McIntyre S, Lewis S, et al. Comparison of humoral and cellular responses in kidney transplant recipients receiving BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines. *medRxiv* 2021:2021.2007.2009.21260192, doi:10.1101/2021.07.09.21260192.

Strategy for Patient-Oriented Research

- 301. Lemieux JE, Li A, Gentili M, Perugino CA, Weiss ZF, Bowman K, Ankomah P, Liu H, Lewis GD, Bitar N, et al. Vaccine serologic responses among transplant patients associate with COVID-19 infection and T peripheral helper cells. *medRxiv* 2021:2021.2007.2011.21260338, doi:10.1101/2021.07.11.21260338.
- 302. Clarke CL, Martin P, Gleeson S, Thomson T, Edwards H, Mortimer P, McIntyre S, Deborah J, Cox A, Pickard G, et al. Comparison of immunogenicity between BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines in a large haemodialysis population. medRxiv 2021:2021.2007.2009.21260089, doi:10.1101/2021.07.09.21260089.
- 303. Benotmane I, Gautier -Vargas G, Gallais F, Gantner P, Cognard N, Olagne J, Velay A, Heibel F, Braun-Parvez L, Martzloff J, et al. Strong antibody response after a first dose of a SARS-CoV-2 mRNA-based vaccine in kidney transplant recipients with a previous history of COVID-19. *American Journal of Transplantation* 2021, n/a, doi:10.1111/ajt.16764.
- 304. Xu Q, Sood P, Helmick D, Lomago J, Tevar AD, Zeevi A. Positive flow cytometry crossmatch with discrepant antibody testing results following Covid-19 vaccination. *American Journal of Transplantation* 2021, n/a, doi:10.1111/ajt.16753.
- 305. Schramm R, Costard-Jäckle A, Rivinius R, Fischer B, Müller B, Boeken U, Haneya A, Provaznik Z, Knabbe C, Gummert J. Poor humoral and T-cell response to two-dose SARS-CoV-2 messenger RNA vaccine BNT162b2 in cardiothoracic transplant recipients. *Clin Res Cardiol* 2021, 2021/07/10:1-8, doi:10.1007/s00392-021-01880-5.
- 306. Revon-Riviere G, Ninove L, Min V, Rome A, Coze C, Verschuur A, e Lamballerie X, André N. The BNT162b2 mRNA COVID-19 vaccine in adolescents and young adults with cancer: A monocentric experience. *European journal of cancer* 2021, 154:30-34, doi:10.1016/j.ejca.2021.06.002.
- 307. Brosh-Nissimov T, Orenbuch-Harroch E, Chowers M, Elbaz M, Nesher L, Stein M, Maor Y, Cohen R, Hussein K, Weinberger M, et al. BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully-vaccinated hospitalized COVID-19 patients in Israel. *Clin Microbiol Infect* 2021, 2021/07/11, doi:10.1016/j.cmi.2021.06.036.
- 308. Ehmsen S, Asmussen A, Jeppesen SS, Nilsson AC, Østerlev S, Vestergaard H, Justesen US, Johansen IS, Frederiksen H, Ditzel HJ. Antibody and T cell immune responses following mRNA COVID-19 vaccination in patients with cancer. *Cancer Cell* 2021, 39,2021/08/05:1034-1036, doi:10.1016/j.ccell.2021.07.016
- 309. Greenberger LM, Saltzman LA, Senefeld JW, Johnson PW, DeGennaro LJ, Nichols GL. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. *Cancer Cell* 2021, 39,2021/08/01:1031-1033, doi:10.1016/j.ccell.2021.07.012
- 310. Hall VG, Ferreira VH, Ku T, Ierullo M, Majchrzak-Kita B, Chaparro C, Selzner N, Schiff J, McDonald M, Tomlinson G, et al. Randomized Trial of a Third Dose of mRNA-1273 Vaccine in Transplant Recipients. *New England Journal of Medicine* 2021:NEJMc2111462, doi:10.1056/NEJMc2111462.
- 311. Lotan I, Romanow G, Levy M. Patient-reported safety and tolerability of the COVID-19 vaccines in persons with rare neuroimmunological diseases. *Multiple Sclerosis and Related Disorders* 2021, 55, doi:10.1016/j.msard.2021.103189.
- 312. Loconsole D, Stea ED, Sallustio A, Fontò G, Pronzo V, Simone S, Centrone F, Accogli M, Gesualdo L, Chironna M. Severe COVID-19 by SARS-CoV-2 lineage B.1.1.7 in vaccinated solid-organ transplant recipients: New preventive strategies needed to protect immunocompromised patients. *Vaccines* 2021, 9, doi:10.3390/vaccines9080806.
- 313. Scoccianti S, Delli Paoli C, Grilli Leonulli B, Paoletti L, Alpi P, Caini S, Barca R, Fondelli S, Russo S, Perna M, et al. Acute tolerance of Moderna mRNA-1273 vaccine against COVID-19 in patients with cancer treated with radiotherapy. *The Lancet Oncology* 2021, doi:10.1016/S1470-2045(21)00427-7.
- 314. Buttiron Webber T, Provinciali N, Musso M, Ugolini M, Boitano M, Clavarezza M, D'Amico M, Defferrari C, Gozza A, Briata IM, et al. Predictors of Poor Seroconversion and Adverse Events to SARS-CoV-2 mRNA BNT162b2 Vaccine in Cancer Patients on Active Treatment. SSRN Preprint 2021.
- 315. Firinu D, Perra A, Campagna M, Littera R, Fenu G, Meloni F, Cipri S, Sedda F, Conti M, Miglianti M, et al. Evaluation of antibody response to BNT162b2 mRNA COVID-19 vaccine in patients affected by immune-mediated inflammatory diseases up to 5 months after vaccination. SSRN Preprint 2021, doi:10.21203/rs.3.rs-782244/v1.
- 316. Whitaker HJ, Tsang RS, Byford R, Andrews NJ, Sherlock J, Pillai PS, John W, Button E, Campbell H, Sinnathamby M, et al. Pfizer-BioNTech and Oxford AstraZeneca COVID-19 vaccine effectiveness and immune response among individuals in clinical risk groups. *https://khub.net/* 2021.
- 317. Damiani G, Allocco F, Malagoli P. COVID-19 vaccination and patients with psoriasis under biologics: real-life evidence on safety and effectiveness from Italian vaccinated healthcare workers. *Clinical and Experimental Dermatology* 2021, n/a, doi:https://doi.org/10.1111/ced.14631.
- 318. Allen-Philbey K, Stennett A, Begum T, Johnson AC, Dobson R, Giovannoni G, Gnanapavan S, Marta M, Smets I, Turner BP, et al. Experience with the COVID-19 AstraZeneca vaccination in people with multiple sclerosis. *Multiple Sclerosis and Related Disorders* 2021, 52:103028, doi:10.1016/j.msard.2021.103028.
- 319. Kuter DJ. Exacerbation of immune thrombocytopenia following Covid-19 vaccination. *British Journal of Haematology* 2021, n/a, doi:https://doi.org/10.1111/bjh.17645.
- 320. Shenoy P, Ahmed S, Cherian S, Paul A, Shenoy V, Vijayan A, Reji R, Thampi A, Babu ASS, Mohan M. Immunogenicity of the ChAdOx1 nCoV-19 and the BBV152 Vaccines in Patients with Autoimmune Rheumatic Diseases. *medRxiv* 2021:2021.2006.2006.21258417, doi:10.1101/2021.06.06.21258417.
- 321. Callejas Rubio JL, Ríos Fernández R, De la Hera Fernández J. Efficacy and safety of SARS-CoV-2 vaccine in

Strategy for Patient-Oriented Research

patients with giant cell arteritis. Medicina Clinica 2021, doi:10.1016/j.medcli.2021.05.003.

- 322. Rosman Y, Lavi N, Meir-Shafrir K, Lachover-Roth I, Cohen-Engler A, Mekori YA, Confino-Cohen R. Safety of BNT162b2 mRNA COVID-19 vaccine in patients with mast cell disorders. *J Allergy Clin Immunol Pract* 2021, 2021/07/06, doi:10.1016/j.jaip.2021.06.032.
- 323. von Csefalvay C. A case-control study of autoimmune AEFIs following COVID-19 vaccination reported to VAERS. *medRxiv* 2021.
- 324. Fong D, Mair MJ, Mitterer M. High levels of anti–SARS-CoV-2 IgG antibodies in previously infected patients with cancer after a single dose of BNT 162b2 vaccine. *European journal of cancer* 2021, 154:4-6, doi:10.1016/j.ejca.2021.05.036.
- 325. Blazquez-Navarro A, Safi L, Meister TL, Thieme CJ, Kaliszczyk S, Paniskaki K, Stockhausen M, Hörstrup J, Cinkilic O, Flitsch-Kiefner L, et al. Superior cellular and humoral immunity towards SARS-CoV-2 reference and alpha and beta VOC strains in COVID-19 convalescent as compared to the prime boost BNT162b2 vaccinated dialysis patients. *Kidney Int* 2021, 2021/07/18, doi:10.1016/j.kint.2021.07.006.
- 326. Ishay Y, Kenig A, Tsemach-Toren T, Amer R, Rubin L, Hershkovitz Y, Kharouf F. Autoimmune phenomena following SARS-CoV-2 vaccination. *International Immunopharmacology* 2021, 99:107970, doi:10.1016/j.intimp.2021.107970.
- 327. Lotan I, Wilf-Yarkoni A, Friedman Y, Stiebel-Kalish H, Steiner I, Hellmann MA. Safety of the BNT162b2 COVID-19 vaccine in Multiple Sclerosis: Early experience from a tertiary MS Center in Israel. *Eur J Neurol* 2021, 2021/07/22, doi:10.1111/ene.15028.
- 328. Felten R, Kawka L, Dubois M, Ugarte-Gil M, Fuentes-Silva Y, Piga M, Arnaud L. Tolerance of COVID-19 vaccination in patients with systemic lupus erythematosus: the international VACOLUP study. *The Lancet Rheumatology* 2021, doi:10.1016/S2665-9913(21)00221-6.
- 329. So ACP, McGrath H, Ting J, Srikandarajah K, Germanou S, Moss C, Russell B, Monroy-Iglesias M, Dolly S, Irshad S, et al. COVID-19 Vaccine Safety in Cancer Patients: A Single Centre Experience. *Cancers* 2021, 13:3573, doi:10.3390/cancers13143573.
- 330. Terpos E, Gavriatopoulou M, Ntanasis-Stathopoulos I, Briasoulis A, Gumeni S, Malandrakis P, Fotiou D, Papanagnou ED, Migkou M, Theodorakakou F, et al. The neutralizing antibody response post COVID-19 vaccination in patients with myeloma is highly dependent on the type of anti-myeloma treatment. *Blood Cancer J* 2021, 11,2021/08/04:138, doi:10.1038/s41408-021-00530-3.
- 331. Rzymski P, Pazgan-Simon M, Simon K, Łapiński T, Zarębska-Michaluk D, Szczepańska B, Chojnicki M, Mozer-Lisewska I, Flisiak R. Clinical characteristics of hospitalized covid-19 patients who received at least one dose of covid-19 vaccine. Vaccines 2021, 9, doi:10.3390/vaccines9070781.
- 332. Benucci M, Damiani A, Infantino M, Manfredi M, Grossi V, Lari B, Gobbi FL, Sarzi-Puttini P. Presence of specific T cell response after SARS-CoV-2 vaccination in rheumatoid arthritis patients receiving rituximab. *Immunol Res* 2021, 2021/07/30:1-3, doi:10.1007/s12026-021-09212-5.
- 333. Sotiriou E, Tsentemeidou A, Bakirtzi K, Lallas A, Ioannides D, Vakirlis E. Psoriasis exacerbation after Covid-19 vaccination: report of 14 cases from a single center. *Journal of the European Academy of Dermatology and Venereology* 2021, n/a, doi:10.1111/jdv.17582.
- 334. Polewska K, Tylicki P, Biedunkiewicz B, Rucińska A, Szydłowska A, Kubanek A, Rosenberg I, Rodak S, Ślizień W, Renke M, et al. Safety and Tolerability of the BNT162b2 mRNA COVID-19 Vaccine in Dialyzed Patients. COViNEPH Project. *Medicina* 2021, 57:732, doi:10.3390/medicina57070732.
- 335. Talamonti M, Galluzzo M. Safety of COVID-19 vaccines in patients with psoriasis undergoing therapy with antiinterleukin agents. *Expert Opinion on Biological Therapy* 2021, 0:null, doi:10.1080/14712598.2021.1965985.
- 336. Tylicki L, Biedunkiewicz B, Dąbrowska M, Ślizień W, Tylicki P, Polewska K, Rosenberg I, Rodak S, Dębska-Ślizień A. Humoral response to SARS-CoV-2 vaccination promises to improve the catastrophic prognosis of hemodialysis patients as a result of COVID-19. The COVINEPH Project. *Polish Archives of Internal Medicine* 2021, doi:10.20452/pamw.16069.
- 337. Tallantyre EC, Vickaryous N, Anderson V, Asardag AN, Baker D, Bestwick J, Bramhall K, Chance R, Evangelou N, George K, et al. COVID-19 vaccine response in people with multiple sclerosis. *medRxiv* 2021:2021.2007.2031.21261326, doi:10.1101/2021.07.31.21261326.
- 338. Henriquez S, Zerbit J, Bruel T, Ouedrani A, Planas D, Deschamps P, Staropoli I, Hadjadj J, Varet B, Suarez F, et al. Anti-CD38 therapy impairs SARS-CoV-2 vaccine response in multiple myeloma patients. *medRxiv* 2021:2021.2008.2008.21261769, doi:10.1101/2021.08.08.21261769.
- 339. Rabinovitch T, Ben-Arie-Weintrob Y, Hareuveni-Blum T, Shaer B, Vishnevskia-Dai V, Shulman S, Newman H, Biadsy M, Masarwa D, Fischer N, et al. Uveitis following the BNT162b2 mRNA vaccination against SARS-CoV-2 infection: a possible association. *Retina* 2021, Publish Ahead of Print, doi:10.1097/IAE.00000000003277.
- 340. Ravanan R, Mumford L, Ushiro-Lumb I, Callaghan C, Pettigrew G, Thorburn D, Gardiner D, Forsythe J. Two Doses of SARS-CoV-2 Vaccines Reduce Risk of Death Due to COVID-19 in Solid Organ Transplant Recipients: Preliminary Outcomes From a UK Registry Linkage Analysis. *Transplantation* 2021, Publish Ahead of Print,

SPOR Evidence Alliance Strategy for Patlent-Oriented Research

doi:10.1097/TP.000000000003908.

341. Boekel L, Kummer LY, van Dam KPJ, Hooijberg F, van Kempen Z, Vogelzang EH, Wieske L, Eftimov F, van Vollenhoven R, Kuijpers TW, et al. Adverse events after first COVID-19 vaccination in patients with autoimmune diseases. *The Lancet Rheumatology* 2021, 3:e542-e545, doi:10.1016/S2665-9913(21)00181-8.

Strategy for Patient-Oriented Research

- 342. Speer C, Göth D, Benning L, Buylaert M, Schaier M, Grenz J, Nusshag C, Kälble F, Kreysing M, Reichel P, et al. Early Humoral Responses of Hemodialysis Patients after COVID-19 Vaccination with BNT162b2. *Clinical Journal of the American Society of Nephrology* 2021, 16:1073-1082, doi:10.2215/CJN.03700321.
- 343. Dhakal B, Abedin SM, Fenske TS, Chhabra S, Ledeboer N, Hari P, Hamadani M. Response to SARS-CoV-2 vaccination in patients after hematopoietic cell transplantation and CAR-T cell therapy. *Blood* 2021:blood.2021012769, doi:10.1182/blood.2021012769.
- 344. Veenstra J, Wang J, McKinnon-Maksimowicz K, Liu T, Zuniga B, Hamzavi I, Zhou L, Mi Q-S. Correspondence on 'Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort'. *Annals of the Rheumatic Diseases* 2021:annrheumdis-2021-220736, doi:10.1136/annrheumdis-2021-220736.
- 345. Ravanan R, Mumford L, Ushiro-Lumb I, Callaghan C, Pettigrew G, Thorburn D, Gardiner D, Forsythe J. Two Doses of SARS-CoV-2 Vaccines Reduce Risk of Death Due to COVID-19 in Solid Organ Transplant Recipients: Preliminary Outcomes From a UK Registry Linkage Analysis. *Transplantation* 2021, Publish Ahead of Print, doi:10.1097/TP.00000000003908.
- 346. Speer C, Göth D, Benning L, Buylaert M, Schaier M, Grenz J, Nusshag C, Kälble F, Kreysing M, Reichel P, et al. Early Humoral Responses of Hemodialysis Patients after COVID-19 Vaccination with BNT162b2. *Clinical Journal of the American Society of Nephrology* 2021, 16:1073-1082, doi:10.2215/CJN.03700321.
- 347. Dhakal B, Abedin SM, Fenske TS, Chhabra S, Ledeboer N, Hari P, Hamadani M. Response to SARS-CoV-2 vaccination in patients after hematopoietic cell transplantation and CAR-T cell therapy. *Blood* 2021:blood.2021012769, doi:10.1182/blood.2021012769.
- 348. Veenstra J, Wang J, McKinnon-Maksimowicz K, Liu T, Zuniga B, Hamzavi I, Zhou L, Mi Q-S. Correspondence on 'Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort'. *Annals of the Rheumatic Diseases* 2021:annrheumdis-2021-220736, doi:10.1136/annrheumdis-2021-220736.
- 349. Song CC, Christensen J, Kumar D, Vissichelli N, Morales M, Gupta G. Early Experience with SARs-CoV-2 mRNA Vaccine Breakthrough Among Kidney Transplant Recipients. *Transpl Infect Dis* 2021, 2021/05/30:e13654, doi:10.1111/tid.1365410.1111/tid.13654.; ID: 751855
- 350. Ramirez GA, Della-Torre E, Moroni L, Yacoub MR, Dagna L. Correspondence on 'Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort'. *Ann Rheum Dis* 2021, 2021/05/26, doi:10.1136/annrheumdis-2021-220539.
- 351. Salviani C, Scolari F, Alberici F. Correspondence on 'Immunogenicity and safety of anti-SARS-Cov-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort'. *Annals of the Rheumatic Diseases* 2021, doi:10.1136/annrheumdis-2021-220496.
- 352. Bardazzi F, Abbenante D, Filippi F, Sacchelli L, Loi C. The initial experience of COVID-19 vaccination in autoimmune blistering diseases patients from a reference care center in Italy. *Dermatol Ther* 2021, 2021/07/08:e15057, doi:10.1111/dth.15057
- 353. Boekel L, Kummer LY, van Dam KPJ, Hooijberg F, van Kempen Z, Vogelzang EH, Wieske L, Eftimov F, van Vollenhoven R, Kuijpers TW, et al. Adverse events after first COVID-19 vaccination in patients with autoimmune diseases. *The Lancet Rheumatology* 2021, doi:10.1016/S2665-9913(21)00181-8.
- 354. Connolly CM, Boyarsky BJ, Ruddy JA, Werbel WA, Christopher-Stine L, Garonzik-Wang J, Segev DL, Paik JJ. Absence of Humoral Response After Two-Dose SARS-CoV-2 Messenger RNA Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: A Case Series. Ann Intern Med 2021, 2021/05/25, doi:10.7326/m21-1451
- 355. Nions J, Muir L, Zheng J, Rees-Spear C, Rosa A, Earl C, Cherepanov P, Gupta R, Khwaja A, Jolly C, et al. SARS-CoV-2 antibody responses in patients with aggressive haematological malignancies. *medRxiv* 2020:2020.2009.2029.20202846, doi:10.1101/2020.09.29.20202846.
- 356. Lubetzky M, Sukhu A, Zhao Z, Rand S, Sharma V, Sultan S, Kapur Z, Albakry S, Hauser N, Marku-Podvorica J, et al. SARS-CoV-2 Antibody Response in Patients Undergoing Kidney Transplantation. *medRxiv*

probantes de la SRAP 🔶

2021:2021.2007.2025.21261066, doi:10.1101/2021.07.25.21261066.

- 357. Butt AA, Omer SB, Yan P, Shaikh OS, Mayr FB. SARS-CoV-2 Vaccine Effectiveness in a High-Risk National Population in a Real-World Setting. Ann Intern Med 2021, 2021/07/20, doi:10.7326/m21-1577
- Butt AA, Khan T, Yan P, Shaikh OS, Omer SB, Mayr F. Rate and Risk Factors for Breakthrough SARS-CoV-2 358. infection After Vaccination. J Infect 2021, 2021/05/31, doi:10.1016/j.jinf.2021.05.021
- 359. Mado H, Adamczyk-Sowa M. Comment on the paper Negative anti-SARS-CoV-2 S antibody response following Pfizer SARS-CoV-2 vaccination in a patient on ocrelizumab: the likely explanation for this phenomenon based on our observations. J Neurol 2021, 2021/04/18, doi:10.1007/s00415-021-10547-0
- 360. Komaba H, Wada T, Fukagawa M. Relapse of Minimal Change Disease Following the Pfizer-BioNTech COVID-19 Vaccine. Am J Kidney Dis 2021, 2021/05/24, doi:10.1053/j.ajkd.2021.05.006
- Wolf E. Case Report of COVID-19 Vaccination in a Rituximab-treated Mantle Cell Lymphoma Patient. SSRN- Lancet 361. prepublication 2021.
- 362. Westhoff TH, Seibert FS, Anft M, Blazquez-Navarro A, Skrzypczyk S, Doevelaar A, Hölzer B, Paniskaki K, Dolff S, Wilde B, et al. Correspondence on 'SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response'. Ann Rheum Dis 2021, 2021/07/18, doi:10.1136/annrheumdis-2021-220756
- Ferguson J, Murugesan K, Banaei N, Liu A. Interferon-gamma release assay testing to assess COVID-19 vaccination 363. response in a SARS-CoV-2 seronegative patient on rituximab: a case report. Int J Infect Dis 2021, 2021/07/04, doi:10.1016/j.ijid.2021.06.054
- 364. Connolly CM, Koenig D, Ravi SN, Azar A, Kant S, Dalal M, Duchen J, Seo P, Antiochos B, Paik JJ, et al. Correspondence on "SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response" by Bonelli et al. Ann Rheum Dis 2021, 2021/08/04, doi:10.1136/annrheumdis-2021-220972
- 365. Chung SH, Wener M, Bays AM, Rahbar H, Morishima C, Bryan AB, Fink SL, Cohen S, Mani NS, Chaudhary A, et al. Correspondence on "SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response" by Bonelli et al. Ann Rheum Dis 2021, 2021/08/04, doi:10.1136/annrheumdis-2021-220957
- Benucci M, Damiani A, Infantino M, Manfredi M, Grossi V, Lari B, Li Gobbi F, Sarzi Puttini P. Correspondence on 366. "SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response"by Bonelli et al. Ann Rheum Dis 2021, 2021/08/04, doi:10.1136/annrheumdis-2021-220829
- 367. Chow RM, Rajput K, Howie BA, Varhabhatla N. The COVID-19 Vaccine and Interventional Procedures: exploring the relationship between steroid administration and subsequent vaccine efficacy. Pain Pract 2021, 2021/07/28, doi:10.1111/papr.13062
- Malinis M, Cohen E, Azar MM. Invited Response to "SARS-CoV-2 vaccine effectiveness trumps immunogenicity in 368. solid organ transplant recipients". Am J Transplant 2021, 2021/07/31, doi:10.1111/ajt.16770
- 369. Skroza N, Bernardini N, Tolino E, Proietti I, Mambrin A, Marchesiello A, Marraffa F, Rossi G, Volpe S, Potenza C. Safety and Impact of Anti-COVID-19 Vaccines in Psoriatic Patients Treated with Biologics: A Real Life Experience. Journal of Clinical Medicine 2021, 10:3355, doi:10.3390/jcm10153355.
- 370. Stumpf J, Tonnus W, Paliege A, Rettig R, Steglich A, Gembardt F, Kessel F, Kroöger H, Arndt P, Sradnick J, et al. Cellular And Humoral Immune Responses after Three Doses of BNT162b2 mRNA SARS-Cov-2 Vaccine in Kidney Transplant. Transplantation 2021, Publish Ahead of Print, doi:10.1097/TP.000000000003903.
- 371. Puranik A, Lenehan PJ, Silvert E, Niesen MJM, Corchado-Garcia J et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of alpha and delta variant prevalence. Doi.org/10.1101/2021.08.06.21261707.