Public Health Implications of SARS-CoV-2
Variants of Concern

UPDATED: DECEMBER 3, 2021

JANET CURRAN, PHD RN, DALHOUSIE UNIVERSITY, PROFESSOR
LEAH BOULOS, MLIS, MARITIME SPOR SUPPORT UNIT, SENIOR EVIDENCE SYNTHESIS CONSULTANT
MARI SOMERVILLE, PHD, DALHOUSIE UNIVERSITY, POSTDOCTORAL FELLOW
JUSTINE DOL, PHD, DALHOUSIE UNIVERSITY, RESEARCH COORDINATOR
CATIE JOHNSON, DALHOUSIE UNIVERSITY, RESEARCH ASSISTANT
BEARACH REYNOLDS, MB BCH BAO BA MRCPI, ESI FELLOW, EVIDENCE SYNTHESIS IRELAND
JULIE CARUSO, MLIS, RESEARCH ASSOCIATE, DALHOUSIE UNIVERSITY
TRUDY FLYNN, PATIENT PARTNER
REBECCA MACKAY, PATIENT PARTNER

FUNDED BY COVARR-NET
Acknowledgments
The authors would like to acknowledge Ruth Martin-Misener, Marilyn Macdonald, Helen Wong, Danielle Shin, Allyson Gallant, and Daniel Crowther for their assistance with study screening and data extraction.

Public Health Implications of SARS-CoV-2 Variants of Concern
Updated December 3, 2021
Evidence up to November 15, 2021

Introduction
The SARS-CoV-2 virus, responsible for COVID-19, was declared a global pandemic by the World Health Organization (WHO) in March 2020.¹ As of December 2, 2021, over 262 million cases of COVID-19 have been reported worldwide and over 5.2 million people have died as a result of COVID-19 since the start of the pandemic.² Increased numbers of COVID-19 cases are causing significant concerns around identifying optimal vaccination strategies and enforcing appropriate public health measures to manage the spread of the SARS-CoV-2 virus.

As of November 26, 2021, five variants of the original SARS-CoV-2 lineage have been declared variants of concern (VOC) by the WHO, with other variants under ongoing assessment (see Table 1).³ VOC are defined by their increased potential for transmission, presence of genomic mutations, and rapid spread across countries or regions leading to possible decreased effectiveness of public health measures.⁴ The increased transmissibility of VOC has led to surges in COVID-19 incidence and consequently, hospitalizations and mortality.⁵ Therefore, this living systematic review aims to provide a synthesis of current evidence related to VOC in the context of public health measures. This living synthesis builds on a previous rapid scoping review examining the impacts of VOC on public health and health systems conducted by this team.⁶

Of note, the literature search was conducted prior to the WHO labeling Omicron as a VOC; thus, this update does not include any information related to Omicron.

Table 1. Current variants of concern (VOC)³,⁷

<table>
<thead>
<tr>
<th>WHO Name</th>
<th>PANGO LINEAGE</th>
<th>Alternate name</th>
<th>Country first detected in</th>
<th>Earliest samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>B.1.1.7</td>
<td>VOC 202012/01</td>
<td>United Kingdom</td>
<td>September 2020</td>
</tr>
<tr>
<td>Beta</td>
<td>B.1.351</td>
<td>VOC 202012/02</td>
<td>South Africa</td>
<td>August 2020</td>
</tr>
<tr>
<td>Gamma</td>
<td>P.1</td>
<td>VOC 202101/02</td>
<td>Brazil</td>
<td>December 2020</td>
</tr>
<tr>
<td>Delta</td>
<td>B.1.617.2</td>
<td>N/A</td>
<td>India</td>
<td>October 2020</td>
</tr>
<tr>
<td>Omicron</td>
<td>B.1.1.529</td>
<td>N/A</td>
<td>Multiple countries</td>
<td>November 2021</td>
</tr>
</tbody>
</table>
Emerging Points of Interest

- While evidence continues to show that boosters and/or additional doses of vaccine provide good protection against VOC, prioritizing primary dose series completion (1 or 2 doses as required) on a global scale should remain a focus.
- Evidence continues to show that combined NPIs are more effective than single NPIs at containing outbreaks and should remain in place until very high vaccination rates (primary dose series) are achieved.
- Further evidence shows that interval delay between doses in a primary series (up to 16 weeks) demonstrates vaccine effectiveness (VE) at 5-8 months against VOC.
- Further evidence supports the effectiveness of following 1 or 2 doses of non-mRNA vaccine with a second or booster dose of mRNA vaccine.
- Further evidence supports that COVID-19 is airborne, with studies showing increased risk of transmission the closer individuals are to an infected individual.
- Frequent testing remains an important strategy for containing outbreaks, but modelled and observed approaches vary widely, with little consensus on optimal frequency or administration.
- Likewise, recommendations for the ideal length of quarantine and isolation remain varied.

Patient-Identified Key Messages

- There is a need to continue with masking and other NPIs as indicated by Public Health, even if you are double vaccinated.
- A third (booster) vaccine is likely going to be required to stay ahead of Delta variant. Be prepared when your times comes.
- Frequent PCR and rapid testing, including asymptomatic testing, is needed to monitor and manage transmission of VOCs.

Categories of evidence included in this report are as follows:

Modifying approach to vaccines: Any studies that reported on changing approaches to vaccinations such as modelling the rollout schedules or impact of NPIs in relation to vaccine schedules. Four sub-categories fell under this category:
 a) Modelling potential vaccination rollout schedules
 b) Evaluating past vaccination rollout schedules
 c) Modelling potential vaccination rollout schedules in the presence of NPIs
 d) Evaluating past vaccination rollout schedules in the presence of NPIs

Infection prevention measures: Any studies that reported on public health measures aimed at preventing the spread of VOC such as mask wearing, hand washing or physical distancing.
Infection control measures: Any studies that reported on public health measures aimed at controlling the spread of VOC such as quarantines, lockdowns, screening or testing strategies.

NEW Booster Doses, Third Doses and Additional Doses
The following definitions and terminology are used by the WHO throughout its policy recommendations on COVID-19 vaccination.8

Booster doses are administered to a vaccinated population that has completed a primary vaccination series (currently one or two doses of COVID-19 vaccine depending on the product) when, with time, the immunity and clinical protection has fallen below a rate deemed sufficient in that population. The objective of a booster dose is to restore vaccine effectiveness from that deemed no longer sufficient.

Additional doses of a vaccine may be needed as part of an extended primary series for target populations where the immune response rate following the standard primary series is deemed insufficient. The objective of an additional dose in the primary series is to optimize or enhance the immune response to establish a sufficient level of effectiveness against disease. In particular, immunocompromised individuals often fail to mount a protective immune response after a standard primary series, but also older adults may respond poorly to a standard primary series.

In this report, we use the terms *booster* and *additional doses* as defined by the WHO, which may differ from study author usage.

Results Tables
The following tables present a summary of evidence in relation to each of the categories described above. 44 studies were added to this update, and the most recent content is in bold, blue font.
Table 2. Evidence related to modifying approach to vaccination, divided by VOC

*Note: Only observational studies were appraised for quality

<table>
<thead>
<tr>
<th>Category</th>
<th>Alpha (B.1.1.7)</th>
<th>Beta (B.1.351)</th>
<th>Gamma (P.1)</th>
<th>Delta (B.1.617.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modifying approach to vaccination</td>
<td>• Increasing primary vaccination coverage (2 doses) should be prioritised over additional doses in the design of allocation strategies of COVID-19 vaccines⁹</td>
<td>• Speed of vaccine rollout is key factor in achieving low IAR and disease burden¹³</td>
<td>• Speed of vaccine rollout is key factor in achieving low IAR and disease burden¹⁶,¹⁸ and preventing additional VOC-driven waves²³,²⁷</td>
<td>• Increasing primary vaccination coverage (2 doses) should be prioritised over third dose in the design of allocation strategies of COVID-19 vaccines⁹</td>
</tr>
<tr>
<td>Modelling potential vaccination rollout schedules for first and second doses</td>
<td>• Mixing vaccine types may be effective against SARS-CoV-2¹⁰</td>
<td>• Herd immunity could be reached in China by Sept 2021 if vaccines extended to age 3+²⁵</td>
<td>• Postponing second vaccine dose is not recommended to avoid VOC-driven waves²³</td>
<td>• Targeted vaccine rollout focusing on children²⁵,²⁸ or adolescents²⁹–³¹ needed to mitigate spread and reach herd immunity</td>
</tr>
<tr>
<td></td>
<td>• Global death toll would increase by 20% if vaccine-rich countries achieve full vaccination status before exporting vaccines to countries in-need¹¹</td>
<td>• Increasing primary vaccination coverage (2 doses) should be prioritised over additional doses in the design of allocation strategies of COVID-19 vaccines⁹</td>
<td>• Herd immunity could be reached in China by Sept 2021 if vaccines extended to age 3+²⁵</td>
<td>• Prioritizing vaccine distribution for children and adults over seniors is needed to minimize death and infection³²</td>
</tr>
<tr>
<td></td>
<td>• Speed of vaccine rollout is key factor preventing additional VOC-driven waves and associated outcomes¹²–²²</td>
<td>• While some research suggests change in inter-dose vaccine period from 21 to 42 days is preferrable,²¹ postponing second vaccine dose is not recommended in other research to avoid VOC-driven waves²³</td>
<td>• Prioritizing staff vaccination with at least two doses can lead to a large reduction of transmission in nursing homes³³</td>
<td>• Prioritizing staff vaccination with at least two doses can lead to a large reduction of transmission in nursing homes³³</td>
</tr>
</tbody>
</table>
| | • Unvaccinated individuals about 10x more likely to experience symptomatic
- Proactive surveillance and prioritized vaccination can reduce severe illness and mortality in vulnerable groups22 with vaccinating children enhancing these benefits24,25
- Minimal impact of vaccinating youth (10-19yr) in reducing transmission, unless 80% of adult population is vaccinated26

<p>| Modelling potential vaccination rollout schedules for additional doses/boosters | Third dose of vaccine is required to eliminate developing mutations and reduce transmission rates37,38 | Third dose of vaccine is required to eliminate developing mutations and reduce transmission rates37 | Third dose of vaccine is required to eliminate developing mutations and reduce transmission rates37 | Third dose of vaccine provides good protection against VOC39 and may be necessary to mitigate the waning immunity of vaccines and increased infectivity of Delta29,40,41 | Third dose of vaccine is required to eliminate developing mutations, reduce transmission rates37,38 | Boosters can lead to a large reduction of transmission in nursing homes; however, symptomatic infections are likely to continue when community transmission is high33 |
| infections vs vaccinated people34 | Speed of vaccine rollout is key factor in achieving low IAR and disease burden16, preventing additional VOC-driven waves16,23,35 | Prioritizing first dose is recommended, as higher protection associated with extended schedules36 | Postponing second vaccine dose is not recommended to avoid VOC-driven waves23 | | | |</p>
<table>
<thead>
<tr>
<th>Evaluating vaccination rollout schedules for first and second doses</th>
<th>• Prioritizing first dose is recommended, as higher protection is associated with extended vaccine schedules36,42,43, but impact on previously infected vs naïve individuals is mixed42,43</th>
<th>• Prioritizing first dose is recommended, as higher protection associated with extended vaccine schedules42–44,46,47 but impact on previously infected vs naïve individuals is mixed42,43</th>
<th>• Targeted vaccination of 80+ age group associated with decreased mortality compared with younger group49</th>
<th>• Prioritizing first dose is recommended, as higher protection associated with extended vaccine schedules36,42,43,46,47, but impact on previously infected vs naïve individuals is mixed42,43</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mixing vaccine types provides superior protection compared to homologous vaccine (either AstraZeneca or Pfizer)44</td>
<td>• Mixing vaccine types provides superior protection compared to homologous vaccine (either AstraZeneca or Pfizer)44</td>
<td>• Mixing vaccine types provides superior protection compared to homologous vaccine (either AstraZeneca or Pfizer)44</td>
<td>• Mixing 1st dose AZ vaccine with 2nd dose mRNA vaccine provides superior protection compared to 2 doses of AZ vaccine52</td>
<td>• Targeted vaccine rollout focusing on children51 needed to mitigate spread and reach herd immunity</td>
</tr>
<tr>
<td>• Vaccination recommended early in pregnancy to maximize maternal protection, without compromising neonatal antibody protection45</td>
<td>• Second dose can be delayed in situations of limited supply and high incidence48</td>
<td>• Vaccination recommended early in pregnancy to maximize maternal protection, without compromising neonatal antibody protection45</td>
<td>• Vaccination recommended early in pregnancy to maximize maternal protection, without compromising neonatal antibody protection45</td>
<td>• Vaccination recommended early in pregnancy to maximize maternal protection, without compromising neonatal antibody protection45</td>
</tr>
<tr>
<td>• Transmission reduction declines 3 months post 2-dose regime of Pfizer and AZ43,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluating vaccination rollout schedules for additional doses/boosters</td>
<td>Appraised studies were of high quality</td>
<td>Appraised studies were of high quality</td>
<td>Appraised study was of medium to high quality</td>
<td>Appraised studies were of medium to high quality</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>• Third dose of vaccine provides good protection against VOC49,53–57</td>
<td>• Third dose of vaccine provides good protection against VOC53–57,59</td>
<td>• Third dose of vaccine provides good protection against VOC53–55</td>
<td>• Third dose of vaccine provides good protection against VOC53–57,59,61–63 64,65 including among immunocompromised individuals66,67</td>
<td></td>
</tr>
<tr>
<td>• Previously infected (PI) individuals had higher immune response post-vaccination suggesting PI should be taken into consideration with third dose recommendations58</td>
<td>• mRNA vaccine recommended as booster for people who responded poorly to 2 primary doses of inactivated virus vaccine60</td>
<td>• mRNA vaccine recommended as booster for people who responded poorly to 2 primary doses of inactivated virus vaccine60</td>
<td>• mRNA vaccine recommended as booster for people who responded poorly to 2 primary doses of inactivated virus vaccine53–57,59,61–63</td>
<td></td>
</tr>
<tr>
<td>• Previously infected individuals had higher immune response post-vaccination suggesting PI should be taken into consideration with third dose recommendations58</td>
<td>• Previously infected individuals had higher immune response post-vaccination suggesting PI should be taken into consideration with third dose recommendations58</td>
<td>• Previously infected individuals had higher immune response post-vaccination suggesting PI should be taken into consideration with third dose recommendations58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modelling different vaccine schedules in relation to NPIs in the general population</th>
<th>Appraised studies were of medium to high quality</th>
<th>Appraised studies were of low to high quality</th>
<th>Appraised studies were of medium to high quality</th>
<th>Appraised studies were of medium to high quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Advocate for NPIs to remain in place during vaccine roll out until sufficient population immunity26,68–76</td>
<td>• Advocate for NPIs to remain in place during vaccine roll out until sufficient population immunity68,69,75</td>
<td>• Advocate for NPIs to remain in place during vaccine roll out until sufficient population immunity75</td>
<td>• Advocate for NPIs to remain in place during vaccine roll out until sufficient population immunity75,82,85</td>
<td></td>
</tr>
<tr>
<td>• NPIs alongside accelerated vaccine roll out is needed</td>
<td></td>
<td></td>
<td>• Combination of accelerated vaccine rollout, including among children86, and NPIs</td>
<td></td>
</tr>
<tr>
<td>Modelling different vaccine schedules in relation to NPIs in children or school settings</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

- NPIs alongside accelerated vaccine roll out is needed to control outbreak\(^81\)
- NPIs alongside accelerated vaccine rollout is needed to control outbreak\(^18,81\)
- Herd immunity is achieved through a combination of natural immunity, the use of different vaccines and social distancing\(^27\)
- Stringent NPIs and third booster may be needed to stop spread of Delta\(^40,97–99\)

- Even with the combination of vaccine and NPIs, infections will hit school aged children the hardest during the Fall 2021\(^100\)
- NPI and intense vaccine strategy targeting children/students\(^30,101,102\) and/or teachers\(^103\) is needed to substantially reduce the risk of infection
- Increasing vaccine coverage in adolescents and regular testing essential to keep schools open\(^104\)
- Including children and adolescents in the vaccination program coupled with moderate NPIs appears necessary to contain Delta transmission\(^29\)
| Evaluating different vaccine schedules in relation to NPIs in the general population | N/A | N/A | N/A | • High vaccine rates plus multicomponent prevention strategies are important to reduce transmission in congregate settings.¹⁰⁵

Appraised study was of high quality

| Evaluating different vaccine schedules in relation to NPIs in school settings | N/A | N/A | N/A | • Staff vaccination and strict NPI are needed in schools to protect younger children.¹⁰⁶

Appraised study was of medium quality
Table 3. Evidence related to infection prevention measures, divided by VOC

*Note: Only observational studies were appraised for quality

<table>
<thead>
<tr>
<th>Category</th>
<th>Alpha (B.1.1.7)</th>
<th>Beta (B.1.351)</th>
<th>Gamma (P.1)</th>
<th>Delta (B.1.617.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection prevention measures</td>
<td>• VOC responds similarly to ethanol and soap as non-VOC¹⁰⁷</td>
<td>• VOC responds similarly to ethanol and soap as non-VOC¹⁰⁷</td>
<td>• Vaccinated individuals may do less handwashing than non-vaccinated individuals¹⁰⁸</td>
<td>• Vaccinated individuals may do less handwashing than non-vaccinated individuals¹⁰⁸</td>
</tr>
<tr>
<td></td>
<td>• Vaccinated individuals may do less handwashing than non-vaccinated individuals¹⁰⁸</td>
<td></td>
<td></td>
<td>Use of hand sanitizer on flights may offer protection against COVID-19 transmission¹⁰⁹</td>
</tr>
<tr>
<td></td>
<td>Appraised study was of medium quality</td>
<td>Appraised study was of medium quality</td>
<td>Appraised study was of medium quality</td>
<td>Appraised studies were of medium quality</td>
</tr>
<tr>
<td>Hand washing</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Hand washing—</td>
<td>Hand washing—</td>
<td>Hand washing—</td>
<td>Hand washing—</td>
</tr>
<tr>
<td></td>
<td>Modelling studies</td>
<td>Modelling studies</td>
<td>Modelling studies</td>
<td>Modelling studies</td>
</tr>
<tr>
<td></td>
<td>• Tight fitting masks¹¹⁰ or double mask combination of surgical/two-layer cloth + N-95¹¹¹ offer better protection</td>
<td>• Double mask combination of surgical/two-layer cloth + N-95 improved fit and protection¹¹¹</td>
<td>• Vaccination status did not change mask wearing in China¹⁰⁸</td>
<td>• Vaccination status did not change mask wearing in China¹⁰⁸</td>
</tr>
<tr>
<td></td>
<td>• Vaccination status did not change mask wearing in China¹⁰⁸</td>
<td>• Vaccination status did not change mask wearing in China¹⁰⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appraised studies were of medium quality</td>
<td>Appraised study was of medium quality</td>
<td>Appraised study was of medium quality</td>
<td>Appraised study was of medium quality</td>
</tr>
<tr>
<td>Masking in the general population—Modelling studies</td>
<td>• Moderately effective masks, when worn consistently correctly by a large portion of the population, are effective at preventing transmission(^{112})</td>
<td>N/A</td>
<td>N/A</td>
<td>• Regardless of vaccination status, masks can reduce the spread of COVID-19(^{92,113-115})</td>
</tr>
<tr>
<td>Masking in school settings—Modelling studies</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>• Universal masking in schools is recommended to reduce in-school transmission(^{97,103,116-118})</td>
</tr>
</tbody>
</table>
| **Physical distancing** | • Settings where physical distancing is unlikely (e.g., hair salons, visiting with friends inside the home) present the highest risk of transmission\(^{119}\)
• In daycares, strict contact restrictions like group assignments among children and staff assignments to groups prevent infections\(^{120}\)
• Vaccinated individuals may engage in less physical distancing than non-vaccinated individuals\(^{108}\) | • Vaccinated individuals may engage in less physical distancing than non-vaccinated individuals\(^{108}\) | • Vaccinated individuals may engage in less physical distancing than non-vaccinated individuals\(^{108}\) | • Vaccinated individuals may engage in less physical distancing than non-vaccinated individuals\(^{108}\)
• For flights, passengers within 3 rows of a positive individual are at a greater risk of catching COVID than those sitting 3+ rows away\(^{109}\) |
<p>| Physical distancing in the general population—Modelling studies | • Strong physical distancing measures are critical even with a mass vaccination campaign(^{19,91}) and physical | • Strong physical distancing measures are critical even with a mass | • Strong physical distancing measures are critical even with a mass vaccination campaign(^{125}) | • Strong physical distancing measures and high compliance are critical even with a |</p>
<table>
<thead>
<tr>
<th>Physical distancing in school settings — Modelling studies</th>
<th>distancing may need to be strengthened by 33.7%124</th>
<th>vaccination campaign68,125</th>
<th>mass vaccination campaign23,122,123</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Adult physical distancing may need to be reduced by 30%89 to minimize high case counts and allow children to return to school</td>
<td>N/A</td>
<td>N/A</td>
<td>• Maintaining 1.5 m of separation during conversation is recommended to reduce transmission114</td>
</tr>
<tr>
<td>• Increasing social distance (e.g., hybrid schooling) can reduce peak hospitalization and death, although it is more disruptive to learning118</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Evidence related to infection control measures, divided by VOC

*Note: Only observational studies were appraised for quality

<table>
<thead>
<tr>
<th>Category</th>
<th>Alpha (B.1.1.7)</th>
<th>Beta (B.1.351)</th>
<th>Gamma (P.1)</th>
<th>Delta (B.1.617.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection control measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing in the general population</td>
<td>• Offering voluntary testing 1-2 times/week to all employees and daily to close contacts of cases for 10 days allowed employees to continue working rather than quarantine(^{126})</td>
<td>• Mass testing (with whole genome sequencing) as soon as an index case was identified quelled community transmission(^{129})</td>
<td>• Mass saliva analysis is a cheap, easy to collect, and feasible asymptomatic testing strategy to potentially slow variant outbreaks(^{130})</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>• Employees more likely to get tested using saliva samples than nasal swabs(^{126})</td>
<td>• Offering voluntary testing 1-2 times/week to all employees and daily to close contacts of cases for 10 days allowed employees to continue working rather than quarantine(^{126})</td>
<td>• Employees more likely to get tested using saliva samples than nasal swabs(^{126})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Testing and routine surveillance of populations at risk are critical(^{127})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Self-collection and pooling approaches to testing of travellers allows large-scale screening using less human, material and financial resources(^{128})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appraised studies were of high quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing in school settings</td>
<td>• In one university setting, compulsory weekly testing of students living in dormitories successfully detected an outbreak(^{131}); in</td>
<td>Appraised study was of low quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
another, asymptomatic mass testing needed to be very frequent (~every 3 days) to be effective at containing outbreaks132

\textit{Appraised study was of medium quality}

Testing in the general population—Modelling studies	When Alpha is dominant, testing is most effective when the vaccination rate is low to moderate, and less effective when the vaccination rate is high133	Expanding testing capacity and reducing testing delays (e.g., time from testing to results) both have an effect on epidemic growth134	Expanding testing capacity and reducing testing delays (e.g., time from testing to results) both have an effect on epidemic growth134	More frequent testing (PCR or rapid antigen) is an effective NPI against Delta103,113,138–140
	Expanding testing capacity and reducing testing delays (e.g., time from testing to results) both have an effect on epidemic growth134	Testing and routine surveillance of populations at risk are critical even with a mass vaccination campaign68	Testing and routine surveillance of populations at risk are critical even with a mass vaccination campaign68	Optimal testing strategies vary, ranging from as frequently as every other day (vs. twice a week for wild type)140 to weekly mass testing141,142
	Expanding testing capacity and reducing testing delays (e.g., time from testing to results) both have an effect on epidemic growth134	When Delta is dominant, testing alone is not enough to contain outbreaks, but must be combined with widespread vaccination; testing targeted at unvaccinated population has the greatest impact133	When Delta is dominant, testing alone is not enough to contain outbreaks, but must be combined with widespread vaccination; testing targeted at unvaccinated population has the greatest impact133	When Delta is dominant, testing alone is not enough to contain outbreaks, but must be combined with widespread vaccination; testing targeted at unvaccinated population has the greatest impact133
	Expanding testing capacity and reducing testing delays (e.g., time from testing to results) both have an effect on epidemic growth134	Rapid antigen tests perform best in low prevalence settings; when prevalence increases, they perform poorly due to high numbers of false negatives138	Rapid antigen tests perform best in low prevalence settings; when prevalence increases, they perform poorly due to high numbers of false negatives138	Rapid antigen test performance improves with
	Expanding testing capacity and reducing testing delays (e.g., time from testing to results) both have an effect on epidemic growth134	Rapid antigen tests perform best in low prevalence settings; when prevalence increases, they perform poorly due to high numbers of false negatives138	Rapid antigen test performance improves with	
- Pre-flight tests may prevent the majority of transmission from travellers137

<table>
<thead>
<tr>
<th>Testing in school settings — Modelling studies</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>In schools, the only single NPI (vs. combined NPIs) that is effective is antigen testing students twice weekly103</td>
<td>In schools, regular testing is a more effective strategy than bubble quarantining139</td>
<td>In partially vaccinated K-12 schools, regular testing may effectively prevent outbreaks; effect correlates with frequency (i.e., testing 1-2 times/week is better than biweekly)104</td>
<td>In K-12 schools with mandatory masking, testing 50% of students reduced infections to 22%116</td>
</tr>
</tbody>
</table>

| Quarantine (close contacts and travellers) in the general population | In a workplace with mandatory daily testing and other NPIs for close contacts, quarantine was not required to contain outbreaks126 | Some studies found that mandatory quarantine and contact tracing are required77 | Mandatory quarantine may be an effective way to contain Gamma147 | Passengers sharing rooms during quarantine after traveling have a greater risk transmission risk than those isolating alone109 |

repeat testing (in two models, 2 tests 36 hours apart115,138; in another, 3 times/week113)

- Expanding testing capacity and reducing testing delays (e.g., time from testing to results) both have an effect on epidemic growth134,140
- Alpha cases almost twice as likely to give rise to household clusters compared with wild type cases, highlighting importance of quarantining household contacts143,144
- Mandatory quarantine and contact tracing are required105,127,137,145–147

<table>
<thead>
<tr>
<th>Appraised studies were of low to high quality</th>
<th>Appraised studies were of high quality</th>
<th>Appraised study was of low quality</th>
<th>Appraised study was of medium quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarantine (close contacts and travellers) in the general population—Modelling studies</td>
<td>Quarantine periods of 0-10 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Alpha circulation within most European countries145</td>
<td>At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- Some studies found that mandatory quarantine and contact tracing are required76, and Beta may require more extreme quarantine and testing measures than other variants145</td>
<td>- Forced prolonged cohabiting may boost viral ability to generate Gamma mutation149</td>
<td>- Quarantine periods of 0-3 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Delta circulation within most European countries145</td>
</tr>
<tr>
<td>- Quarantine periods of 0-10 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Alpha circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- Forced prolonged cohabiting may boost viral ability to generate Gamma mutation149</td>
<td>- Quarantine periods of 0-3 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Delta circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- Quarantine periods of 0-10 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Alpha circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- Forced prolonged cohabiting may boost viral ability to generate Gamma mutation149</td>
<td>- Quarantine periods of 0-3 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Delta circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- Quarantine periods of 0-10 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Alpha circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- Forced prolonged cohabiting may boost viral ability to generate Gamma mutation149</td>
<td>- Quarantine periods of 0-3 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Delta circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- Quarantine periods of 0-10 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Alpha circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- Forced prolonged cohabiting may boost viral ability to generate Gamma mutation149</td>
<td>- Quarantine periods of 0-3 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Delta circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- Quarantine periods of 0-10 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Alpha circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
<tr>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
<td>- Forced prolonged cohabiting may boost viral ability to generate Gamma mutation149</td>
<td>- Quarantine periods of 0-3 days with a PCR test exit requirement can be as effective as a total travel ban at maintaining the current level of Delta circulation within most European countries145</td>
<td>- At least 40% (ideally 50%) of close contacts must be traced and quarantined to achieve containment of strain-specific outbreaks134</td>
</tr>
</tbody>
</table>
| **Isolation (confirmed COVID-19/VOC cases) in the general population—** | • 60-75% of cases would need to be traced and isolated in order to control an Alpha outbreak in Ontario151
• Complete isolation of Alpha cases is required to | N/A | N/A | • Isolating cases rapidly by communicating test results as soon as possible is integral to containing Delta140
• A 10-day isolation requirement for positive |
| --- | --- | --- | --- | --- |
| **Quarantine (close contacts and travellers) in school settings—Modelling studies** | • In a university setting, quarantine of close contacts is important in preventing transmission during the term132 | N/A | N/A | • In schools, bubble quarantine (i.e., sending classroom contacts home) results in large numbers of pupils absent from school, with only modest impact on classroom infection rates139
• In K-12 schools, reactive quarantining of classes with a confirmed case do not have a high benefit, but do have a high cost in terms of student-days lost104 |
| **Isolation (confirmed COVID-19/VOC cases)** | N/A | N/A | N/A | • Based on Delta’s duration of virologic shedding, the ideal isolation period is at least 10 days from a positive test or onset of symptoms, or until the resolution of symptoms, whichever is longer150
Appraised study was of medium quality |
<table>
<thead>
<tr>
<th>Modelling studies</th>
<th>prevent outbreaks; even a small number of infected people dramatically increases the probability of sustained community transmission(^\text{12})</th>
<th>cases and their households is ideal for containing outbreaks(^\text{141})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation (confirmed COVID-19/VOC cases) in school settings—Modelling studies</td>
<td>• In a university setting, isolation of confirmed cases is important in preventing transmission during the term(^\text{132})</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockdowns in the general population</td>
<td>• Lockdowns can exacerbate outbreaks when transient workers are forced to return home from cities to smaller villages(^\text{152})</td>
<td>N/A</td>
</tr>
<tr>
<td>• Lockdowns can exacerbate outbreaks when transient workers are forced to return home from cities to smaller villages(^\text{152})</td>
<td>• Lockdown was one of the most effective strategies to address India’s Delta wave(^\text{153}), and is integral to China’s Delta response(^\text{154})</td>
<td></td>
</tr>
<tr>
<td>Appraised study was of medium quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockdowns in the general population—Modelling studies</td>
<td>• Decreased retail and recreational mobility contributed the most to a reduction in community transmission(^\text{155})</td>
<td>N/A</td>
</tr>
<tr>
<td>• Alpha requires stronger lockdown measures than wild type(^\text{38,79,95,156,157}) including increased length,(^\text{158,159}) earlier implementation(^\text{156}) and stricter regional travel restrictions(^\text{38,136})</td>
<td>• Delta requires stronger lockdown measures than wild type(^\text{38,95})</td>
<td></td>
</tr>
<tr>
<td>• In an Australian model, the strength of lockdown had a bigger impact on hospitalizations and deaths than vaccination strategies(^\text{161})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Early public interventions—lockdowns imposed during an ‘optimal time window’—</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Lockdowns in school settings — Modelling studies</td>
<td>• Shorter, stricter lockdowns may be more effective than longer, moderate lockdowns due to waning adherence(^1)</td>
<td>N/A</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Other/combined NPIs in the general population</td>
<td>• Keeping schools partially open while keeping most of society closed brought R below 1 in a UK model(^3)</td>
<td>N/A</td>
</tr>
<tr>
<td>Other/combined NPIs in school settings</td>
<td>• Opening schools is associated with increased infection rates in the community, but</td>
<td>N/A</td>
</tr>
<tr>
<td>Other/combined NPIs in school settings</td>
<td>• In June 2021, when Alpha was still prevalent, VOC were highest in Canadian provinces with moderate vaccine uptake and strict NPIs, and lowest in provinces with low vaccine uptake and moderate NPIs; this may suggest that the timing of NPI implementation (reactive vs. proactive) may have more of an impact than stringency(^4)</td>
<td>Implementing a combination of contact tracing, mass testing, and whole genome sequencing effectively controlled community transmission(^5)</td>
</tr>
<tr>
<td>Appraised study is of high quality</td>
<td>• In daycares, NPIs like closures in the event of an outbreak can help contain Alpha(^8)</td>
<td>N/A</td>
</tr>
<tr>
<td>Appraised study was of high quality</td>
<td>• NPIs should be implemented until herd immunity is reached(^9)</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
1. Shorter, stricter lockdowns may be more effective than longer, moderate lockdowns due to waning adherence.
2. Lead to reduced death counts from Delta.
3. Keeping schools partially open while keeping most of society closed brought R below 1 in a UK model.
4. In June 2021, when Alpha was still prevalent, VOC were highest in Canadian provinces with moderate vaccine uptake and strict NPIs, and lowest in provinces with low vaccine uptake and moderate NPIs; this may suggest that the timing of NPI implementation (reactive vs. proactive) may have more of an impact than stringency.
5. Implementing a combination of contact tracing, mass testing, and whole genome sequencing effectively controlled community transmission.
6. Combined NPIs were required to address India’s Delta wave.
7. NPIs should be implemented until herd immunity is reached.
8. In daycares, NPIs like closures in the event of an outbreak can help contain Alpha.
9. NPIs should be implemented until herd immunity is reached.
transmission is more likely to occur outside of school and be related to community prevalence \(^{165}\)
- Public health measures in the community decreased school-related growth 2–6 times \(^{165}\)
- In a university setting, isolation of students with COVID-19, contact tracing, and institution-wide prevention measures contributed to reductions in transmission \(^{131}\)

Appraised study is of medium quality

<table>
<thead>
<tr>
<th>Other/combined NPIs in the general population—Modelling studies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- With an 80% vaccination rate, transmission of Alpha after reopening Australia’s international borders continued even with multiple NPIs in place, but hospitalizations remained low (^{85})</td>
<td>N/A</td>
</tr>
<tr>
<td>- Multiple NPIs are more effective than single NPIs, (^{17,25,166}) and reactive NPIs (e.g., quarantine of close contacts) must be deployed quickly</td>
<td></td>
</tr>
<tr>
<td>- Strong test-trace-isolate programs can be sufficient</td>
<td></td>
</tr>
</tbody>
</table>

when symptomatic are very important \(^{106,139}\)

Appraised study is of medium quality

<table>
<thead>
<tr>
<th>Other/combined NPIs in the general population—Modelling studies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- With an 80% vaccination rate and limited NPIs, reopening Australia’s international borders led to a major surge in Delta infections and hospitalizations (^{85})</td>
<td></td>
</tr>
<tr>
<td>- A combination of strict NPIs (including testing) can control Delta outbreaks (^{166})</td>
<td></td>
</tr>
<tr>
<td>- Combined NPIs in the community have an immediate impact on case levels vs. the delayed impact of vaccines (^{97})</td>
<td></td>
</tr>
</tbody>
</table>

| N/A | |

\(^{\text{N/A}}\)
to maintain low case numbers77,167

- Regional mobility networks and spatial connectivity drive patterns of transmission throughout the United States122
- Strict NPIs may lead to overdispersion of highly transmissible variants, leading to their eventual dominance168; evolution of highly transmissible variants may actually be a sign that NPI policies are effective169

- In a model of France, the only way to contain Delta was to keep combined NPIs in place until 100% vaccination coverage was reached75
- Regional mobility networks and spatial connectivity drive patterns of transmission throughout the United States122
- Even modest improvements in a find, test, trace, isolate and support program would control transmission170
- On a cruise ship simulation model, a combined approach of rapid testing, vaccination rates, and masking when possible reduced the likelihood of outbreaks115

<table>
<thead>
<tr>
<th>Other/combined NPIs in school settings—Modelling studies</th>
<th>In a university setting, staggering the return of students to residences is not significantly effective in preventing transmission132</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>* The most effective NPI combination to prevent outbreaks in schools is improved ventilation and weekly antigen testing of teachers and students if a student is the source of infection; if a teacher is the source, mask usage is also required103</td>
<td>In schools, continued use of multiple NPIs (e.g., universal</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>masking and distancing or cohorting) is recommended30,101,171, combined with high vaccination coverage117</td>
</tr>
</tbody>
</table>
Overview of the Evidence
As of December 3, 2021, 166 studies have reported on VOC and public health measures. We include 122 studies from earlier reports (including 20 studies from an earlier rapid review\(^5\), 31 from the first iteration of this report\(^6\), 30 from the updated search on August 25, and 41 from the updated search on October 4). The key findings of included studies can be found in tables 2-4 above, while a more detailed summary of each study can be found in the supplementary material tables. The majority of reported evidence was related to Delta (n=101 studies) or Alpha (n=106), with fewer studies reporting on Beta (n=39 studies) and Gamma (n=32 studies).

Modifying Approach to Vaccine Delivery
- 103\(^9\)–29,29–38,40–79,81–106,119,131,142,173,174 studies reported on vaccine delivery. The majority of modelling studies explored potential vaccine rollout schedules and made recommendations for accelerated vaccination campaigns. This included studies that modelled vaccine rollout in both the presence and absence of NPIs, such as lockdown measures.
- There is evidence to support delay of the second dose under certain conditions, such as limited supply and high incidence.\(^22,24,42,46,48\)
- Evidence is emerging about the value of third dose or booster vaccines\(^37\), particularly in the context of Delta\(^50,53,61,98,119\) and immunocompromised patients.\(^66\)
- Several modelling studies\(^100,101,104\) suggest infections will likely hit school-aged children the hardest and recommend different targeted vaccine schedules with continued NPIs including testing.
- NPIs are recommended to continue in tandem with a vaccine rollout schedule.
- Modelling studies suggest that extending vaccine rollout to children and/or adolescents would help mitigate the spread of VOC, particularly Delta.\(^28–31\)
- Evidence suggests following 1 or 2 doses of non-mRNA vaccine with a dose of mRNA vaccine as second or booster dose provides superior protection against VOC\(^10,44,52,60\)

Infection Prevention Measures
- The one study that reported on handwashing and VOC found that Alpha and Beta respond similarly to ethanol and soap as wildtype SARS-CoV-2.\(^107\)
- One study found that vaccinated individuals may engage in less handwashing and physical distancing than non-vaccinated individuals but not mask wearing.\(^108\)
- Use of hand sanitizer on flights may offer protection against of COVID-19 transmission\(^109\)
- Modelling studies suggest that when worn correctly, masks are effective against Alpha\(^112,110\) and Delta, regardless of vaccination status\(^92,114,115\), unless 100% vaccination with 95% effectiveness and community infection rate are <150 per 100,000.\(^113\) Double masking may offer better for protection against all VOCs.\(^111\)
- Universal masking in schools is recommended to reduce in-school transmission.\(^97,103,116–118\)
- Eleven studies reported on VOC and physical distancing measures.\(^23,68,89,109,114,118–121,124,125\) All studies recommended imposing strong physical distancing measures in the
presence of all VOCs. Two studies suggest that reducing social contacts by adults may be required to minimize spread and keep children in school, yet hybrid learning may further reduce the spread of COVID-19, hospitalization, and death.89,118 Two studies show that when you are in close proximity to an infected individuals (e.g., on planes, having conversations), there is an increased likelihood of transmission.109,114

Infection Control Measures

- **Twenty-four68,70,103,104,113,115,116,126–142** studies reported on testing strategies related to VOC. Testing and routine surveillance of populations are critical to containing Alpha, Beta and Delta, even in the presence of mass vaccination campaigns. Cheaper approaches to testing are possible for detecting Alpha and Gamma.
- **Fifteen109,125–127,132,134,135,137,139,143–147,149** studies reported on quarantine and VOC. Mandatory quarantine were reported as necessary to contain Alpha and Beta. Alpha and Gamma were identified as giving rise to more household clusters than wildtype, suggesting a need for adequate household quarantine measures. The ideal length of quarantine, and whether quarantine and testing are enough to circumvent travel bans, vary across studies.
- **Six12,132,140,141,150,151** studies reported on isolation and VOC to contain transmission of the virus. One study was related to Alpha and Gamma respectively. Isolation duration varied across studies, but one observational study has defined the ideal period of isolation for Delta cases as at least 10 days, based on the duration of virologic shedding.
- **Fifteen79,88,95,136,151–159,161,162** studies reported on lockdowns and VOC. All studies reported needing strict lockdown measures to contain Alpha or Delta. Some studies recommended longer lockdowns and more restrictive travel restrictions, while one study recommended short, strict lockdowns to mitigate the waning adherence to longer lockdowns. Two138,162 studies suggested earlier implementation of lockdown measures to limit virus spread.
- **Twenty-eight17,25,43,75,77,85,87,97,101,103,106,115,117,122,129,131,132,135,139,153,164–171** studies reported on other NPI infection control measures and VOC. Two studies recommended modest to strong test, trace and isolate strategies as necessary to control the spread of Alpha and Delta. Three17,25,166 studies found that deploying a combination of NPIs is more effective than single NPIs, and multiple studies recommended employing NPIs in conjunction with vaccine rollout to mitigate the spread of Alpha or Delta. NPIs remain important until very high vaccination rates are achieved.

Methods

This living synthesis is building on previous evidence gathered up to May 11, 2021. Searches for this update were run on November 15, 2021, in MEDLINE (Ovid MEDLINE All), Embase (Elsevier Embase.com), the Cochrane Database of Systematic Reviews (CDSR) and Central Register of Controlled Trials (CENTRAL) (Cochrane Library, Wiley), Epistemonikos’ L·OVE on COVID-19, and medRxiv and bioRxiv. Titles/abstracts and full text were screened independently by two reviewers. Data were double extracted using a standardized form. Studies were included if they
reported on at least one of the VOC and public health measures. Critical appraisal was conducted for case-control, cohort, and cross-sectional studies using the Newcastle-Ottawa Scale for studies included in our previous rapid review while the appropriate Joanna Briggs critical appraisal tools were used for studies included in the living syntheses. Critical appraisal was not conducted for modelling or laboratory studies.

List of Abbreviations

COVID-19: coronavirus disease 2019
IAR: infection attack rate
NPI: non-pharmaceutical intervention/s
R: effective reproduction number
VE: vaccine effectiveness
VOC: variant/s of concern
WHO: World Health Organization

References

89. Cipriano LE, Haddara WMR, Sander B. MITIGATING THE 4 th WAVE OF THE COVID-19 PANDEMIC IN ONTARIO [Internet]. Infectious Diseases (except HIV/AIDS); 2021

